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ABSTRACT

The control of linear systems with incomplete information is considered
where the unknown disturbances and/or random parameters are assumed to
satisfy s-me statistical laws.

The observer theory for linear systems is developed which generalizes
the concepts due to Kalman and Luenberger pertaining to the design of linear
systems which estimate the state f a linear plant on the basis of both
noise-free and noisy measurements 3f the output variables. The Separation
Theorem for linear system is then extended for such observers-estimators.

The problem of contiolling a linear system with unknown gain is then
considered. An open-loop-feedback-optimal control algorithm is developed
which seems to be computationally feasible. Existence of such suboptimal
control scheme is proved under the assumption that the uncertainties in the
unknown gain will not grow in time. Convergence of such suboptimal control
system to the truly optimal control system is considered. A computer pro-
gram is developed to study the control of a variety thrid order systems
with known poles but unknown zeroes. The experimental results serve to Dro-

vide us with some more insights into the structure and behavior of the
open-loop-feedback-optimal control systems.
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CHAPTER I

INTRODUCTION

In recent years, deterministic optimal control theory has come to its

full maturity. Text books [57], [43] have been written which are devoted

to the theory and application of modern control theory. In deterministic

contrul theory, it is assumed that the future effect of any presenc control

action is exactly known; this class of control problems is often called con-

trol with complete information [73]. In many situations, the necessity of

control arises from the fact that there are perturbing disturbances and/or

component failures in the physical system. These uncertain phenomena pre-

vent us to deduce exactly the future effect of all present actions, and

thus deterministic control theory may not be strictly applicable. The

classes of control problems where future effect cannot be predicted exactly

are called control with incomplete information. There are cases where the

uncertain phenomena can be appropriately modelled as stochastic processes,

so stochastic models and stochastic control theory can be applied [4], [74].

There are also cases where the chance phenomena have no statistical regu-

larity, in these situations, the game-theoretic approach [65] to obtain

min-max control may be more appropriate.

In this thesis we shall study some classes of problems with incomplete

information. First we assume that the system bein? controlled is l.inear

(,iher discrete time or continuous time). The disturbance and random

parameters are assumed to satisfy some statistical laws. In the begiuriing,

we assume that the only sources of uncertainty are the driving and/or obser-

vation disturbances. The statistical laws of disturbances are assumed to be

-1



kec-4,-. -hen, we shall consieer the case where soma- parameters of the syst4Eri

arc iknwn bur satisfy sone statistical laws.

In chater T-1, 5cme zatbenatica3 preliminaries are collected for ease

of refert-nCes. Porability theorv is created briefly fro= a measure-

theoretic approach. Facts about linear stachnastic difference (and dlfferea-

tialE equation.s, amd scochastic optiasization problems are included f-or the

sake cf cenplateness. T3-he sections on Generalized --iccati Equations are

mew res-mlts; and will be use.'l -aIn later discussions. The ztneorv. for ob-

servers for discrete cirre ana continuous tine linear systen-s is developed

in Chapters 111 and IV. The conceptual framework is that an observer is a

eevice urhich will suppiF emplementary infarnation about all recoverable

uncertainties. The abserver- theory is -applied to estimation~ problems wheri-

v'e have only partial observation of the srates in the presence of observa-

ticn ncife which nmay be degener&:e or even totally singular. The resuits

* will include the Kalman filter [391, [501 as a special case.

In Chapter V, we consider the optiinal control of linear system with

known daics with respect to quadratic criterion. The uncertainties

arise from driving and/or observation disturbances with known statistical

! a'vs. One such class of4; problems had been considered before by Joseph arid

Thu [561,, Streibel f59] and WJonham 122). They made the assumption that th-_

observation noise is nondegenerate Gaussian white noise process (see Sectic n

2.2). In this work, this assumption is relaxed. it is assumed that the

observation noise may be: 1) nondegenerate Gaussian white noise, 2)1 de-

generate Gaussian white noise, 3) colored observation noise, 4) totally

singular (i.e., noise-free observations) or 5) the sum of colored and white-
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Gaussian noise. The approach follows that of Wonham's [22] and the tech-

nique is the dynamic programming method.

The control of linear sysems with unknown gain parameters is con-

s-dered in Chapter VI. The open-loop-feedback-optimal approach is used to

derive a suboptimal control sequence which appears to be computationally

feasible. The technique used is that of the matrix minimum principle. Ana-

lytical studics on the overall suboptimal control syzcem are carried out

and the asymptotic behavior of tUe overall suboptimal control system is de-

rived. Computer simulations for some third order lirear systems were carried

out based on the theoretical results obtained in Chapter VI. The experi-

mental results are discussed in Chapter VII. Conclusions and some topics

for further research are listed in Chapter VIII.

The perspective and comparison of this work with published references

are done at the end of each chapter. In this contribution, we develop the

observer theory which provides a deeper understanding of the structure of

state estimators in the case of nondegenerate, degenerate, singular, or

colored observation noise. Th- theory unifies some seemingly different

concepts of Kalman filter, Luenberger observer and exponential estimator,

and treated them in one general framework. Then we have the extension of

the Separation Theorem for such observers-astimators. Finally, we have de-

veloped the open-loop feedback optimal control algorithm for the linear

stochastic systems with unknown constant or random gain parameters; theo-

retical and experimental studies are carried out to this class of problems

which provide us with some insights into the structure and behavior of the

overall control system.
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Notations:

Lower case underscored letters stand for vectors (e.g., x, -); upper

case underscored letters stand for matrices (e.g., A, B). Noisf distur-

bances are denoted by lower case underscored Greek letters (e.g., , ').

Lower case letters with subscripts will denote components (e.g., x. will be1

the i-th component of the vector x, a.. will be the ij-th element of matrix1J

A).

The transpose of a matrix A is denoted by A'. The transpose of a

column vector, x, is a row vector and is denoted by x'.

Let A be an nxn square matrix; the trace of A is defined as

n

tr A =

i=l

Let H(xll, x12, ... , xnm) be a scalar function; we shall denote it by

H(X). The gradient matrix is defit~ad by

= (aH(Xll
,  " ", Xnm))

M will denote the set of all nXm . atrices.
nm

R will denote the product space of ordered n-tuples of real numbers,n

we shall denote the elements in R by column vector x.n_

I will denote the set of all integers and I[i,j ] will denote the set of

integers {i, i + 1, ... , j, i j.



CHAPTER II

MATHEMATICAL PRELIMINARIES

2.1 Introduction

The purpose of this chapter is to introduce the mathematical results

which will be used frequently in the later chapters. Sone of these results
3

are known in the literature while soce are due mainly to the author.

in Section 2.2, probability theory is treated briefly using the

measure-theoretic approach. Except for the precise basic definitions, the

treatment is physical rather than matthematical. For a detailed and rigorous

mathematical treatment, see Doob [1] and Loeve [2]. A rigorous mathematical

consideration on conditional expectation and c~nditional distribution of a

random vector is given. In the opinion of the author, a thorough under-

standing of these concepts is vital in most stochastic optimization problems.

!n Section 2.3, linear stochastic difference and differential equations

are treated to the extent that some of the discussions in later chapters

will require for the sake of completeness.

In Section 2.4, the matrix minimum principle and optimality criteria

are considered to some detail. The matrix minimum principle can allow us

to deduce the necessary conditions for optimality for some. special problems,

whereas the optimality criteria provides us a test to see whether a certain

solution is optimal.

In most control and filtering problems, we shall encounter a matrix

Riccati Difference or Differential equation. To foresee there generalized

matrix Riccati difference and differential equations are investigated in

detail in sections 2.5 and 2.6. The results obtained in these sections

are new, while the approach follows that of Wonham's [32j.

-5-
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Fro= Section 2.2 to Section 2.4, the results are known. ThB discus-

sions in these sections are by ro means exhaustive: detailed references

are given in Section 2.? to indicate ;here more exteasive results can be

found.

2.2 Probability Theory

Definition 2.2.1: Let Z be a set. A a-algebra (iBorel Field, 3-field) on

, F, is a class of subsets of 2, such that it has tie following properties:

a) Fi

b) If A c F, then Ac c F'

c) If A F, i = 1, a, ... , then

U A.c ; A. z-F-- I
i~l i=l

The pair (n, F) consisting of a set f? and a c-fieAd F of subsets of a

is called a =easurable space. The ele=ents of 2 aze called F-=easurable

sets, or just measurable sets if r.here is no ambiguity. In probability

theory, the set 2 represents the sam'le space, and F represents the collec-

tions of possible events.

Definition 2.2.2: Let ('q, F,) and (2, F2) be two measurable spaces. A
22

mapping f of 2 1 onto "2 is said to be measurable if it satinfies the condition:

f-l(A) c F for every A e F 2

Definition 2.2.3: Let 2 be a set, and (fi)i~1 a family oi mappings of

into measurable spaces ('i, Fi)i,!. The a-algebra generated by (fi) is

the smallest o-algebra on Q with respect to which all functions (fi)i 1 are

measurable, and is denoted by F(fi, i C I).

A C denotes the complement of A.
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From the above two definitions, we see that if F' is the v-a]gebra

generated by (f) icl and F" is the o-algebra generated by (fi)iCl" then

F' C F" if and only if 1' 9 I" while I' and I" are both countable.

In general, a basic measurable space (9, F) is assumed to be given

which describes the underlying uncertainty of random phenomena. Such a

measurable space is of an abstract nature; how the uncertainties reveal

themselves depends on the type of experiments we perform to obtain observa-

tions, the outcomes of which we usually referred to as statistics. In ab-

stract mathematical formulation, we let (qi1 F ) be another measurable

space, where we call 2 the observation space and FI the collections of all

possible observations. A measurable function, f, from n to ni is call~d the

observation statistic. Let F C F be a sub-a-algebra, an observation

statistic, f, is said to be F-measurable if F(f) cF. Special cases of

observation statistics are random vectors P = Rn) and random processes

(2 is the set of functions defined on [o, T] with values in Rn).

Definition 2.2.4: Let (n, F) be a measurable space. A probability law

on this space is an abstract positive measure defined on F,' and having

= . The triplet (Q, F, u) is called a probability space.

Let (2, F, ") be a basic probability space, and let (Ql, F1 ) be another

measurable space representing the observations with a statistic f which maps

2 onto i* We can define a probability law on (0i' F ) by defining

U f(A) = (f-l (A)); A E F1. We shall call tf the statistical law of u under

f; this law is also called the law of distribution of the statistic f.

P() is a set function defined on F with the property of countable addi-
tivity, i.e., if A n F, n c I, are disjoint, then we have

n

n n
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Definition 2.2.5: Let (P, F, u) be a probability space, let F1 be a sub-

Z-field of F, and let x be an integrable real-valued random vector. A

conditional expectation of x relative to F is an integrable F -measurable

real-valued random vector X such that

I x(w)di(w) A y(w)du(w) for every A e F1 (2.2.1)

By the Radon-Nikodym theorem, such a random vector, x, exists and is unique

a.s. (almost surely): i.e., if y' is another random vector satisfying

(2.2.1), then

P{W: Y(w) W M'(w)} = (2.2.2)

For this reason, we may simply write such y as E{xIF!}. The conditional ex-

pectation of the indicator of A c F with respect to F1, E{IAIF1}, is also

called the conditional probability of A relative to F1 . Note that this

"probability" is a random variable defined up to an a.s. equality, and not

a number.

Lemma 2.2.6: Let (Q, F, p) be a probability space. Let F1 , F2 be sub-a-

algebra of F with F1 C F2. Then

EJEy IF2 I F11 E IjFll a.s. (2.2.3)

where y is any u-integrable real-valued random vector.

Proof: By definition 2.2.5, we have for all A E F2

A E 2 1 
d  "  (2.2.4)

A aEAF2.24 hae

By assumption, F1 C F2 therefore (2.2.4) holds for all A e F . Therefore
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A F'f EF 2 duIAE1EI IF2 lFI d A EI 2d=

(2.2.5)

A d A 1 AeF,

Now (2.2.4) follows from the a.s. uniqueness of (2.2.1).

Lemma 2.2.7: Let (n2, F, v) be a probability space. Let F be a sub-a-

algebra of F. Let y be a u-integrable random variable and x is a Fl -

measurable random variable, then

ElxyIFlj = x EyIFl . (2.2.6)

Equation (2.2.6) is true when x is a simple function, and the general case

follows using the approximation procedure. For a detailed discussion, see

[1], [2].

Let f be an observation statistic on 12; i.e., f is r measurable func-

tion from (Q, F) onto (121 F1). Let F(f) be the a-algebra generated by f.

Such a statistic induces a conditional probability E{1AIF(Oon F. If there

exists a function Pf(A, w) such that for each w e 1, Pf(A, w) defines a

probability measure on F and for fixed A c F.

Pf (A, w) = EIIAIF(f)4 a.s. (2.2.7)

then P f(A, w) is called a conditional measure on F relative to the statistics

f. Unfortunately, such Pf(A, w) may not exist, and so it may not always be

possible to define a conditional measure on F relative to a certain sta-

tistic.( Let g be another statistic and F(g) is the a-algebra generated

by g. If there exists a conditional measure defined on F(g); i.e., if there

is a function Pf(A, w) such that for each wEc.,Pf(A,w) defines a measure on F(g),
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sad for fixed A c F(g)

Pf(A. w) = EIIAIF(f)} a.s. (2.2.8)

then one can define the law of distribution of g in the regular manner.

Doob [1] had proved that if the statistic g is a ranidom vector (say Y E Rn)

then the conditional measure on F(y), Pf(A, w), A c F(X), exists and so the

conditional distribution of X is well defined (a.s.). Let us denote the

conditional distribution by Pf(Y, w) which defines a conditional measure

on the Borel set of Rn through Y. If #(P) is a measurable function of n-

variables wLh values in Rm, then almost surely, we have: [I ]

El.(Y) IF(f) f 1" (y) Pf (dy1 . d (2.2.9)

We can visualize F(f) as the a-algebra which contains, in a loose sense,

all the statistical information conveyed by the observation statistic about

the total underlying uncertainty of the basic sample space. On the other hand,

the conditional measure Pf(A, w), A c F(y), describes the statistical infor-

mation of f conveyed about the random vector y. In view of this intuitive

interpretation we have the following definition.

Definition 2.2.8: Let (9, F, ) be a probability space, and let F1, F2 and

F3 be sub-a-algebras of F. F and F 3 are said to be conditionally independent

relative to F2 if for any random vectors, Y, which is Fl-measurab]e, and Y3

which is F 3-measurable; we have

Ely 1 4IF2} = E 1IF 2 Ex IF2 I (2.2.10)

Let fl, f2 be two observation statistics; f and f2 are said to be

independent if F(fl) and F(f2) are conditional independent relative to

F2 = , ), or we say F(f1 ) and F(f2) are indeendent.

2
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Let (Q, F, u) be a basic probability space, and let y be a random n-

vector on Q; this induces a law of distribution on Rn through the statistic

y. Let F1 C F such that F and F(y) ir independent relative to F2 = , }.

Then for arbitrary B e FI, we have for A c F(y), and ¢(X) measurable in Rn:

JB Et(y) IF du = B 1(y) di = f QB (y) dui

=fdpi 1~(y)di, (2.2.11)
B 1

= fi (fR ±(y) dJ) dp B C F1

Therefore, we have

f - (y~jl ,() du a.s. (2.2.12)

In particular if Z)(Y) IA, C A F(y), then (2.2.11) and (2.2.12) become

p(Afl B) =(A) j(B) EIIAIFI1 =(A) a.s. (2.2.13)

This implies that if F. and F(y) are independent, the conditional distribu-
4.

tio,, of y relative to F, is the same as the unconditional distribution of y.

Physically, this says that F1 reveals no information about y. In many cases,

FI is generated by some observation statistics, fl' ... f ; so if y is in-

dependent of F = F(f, i = 1, ..., n), this means that the observation of

fl ...'' fn reveals no statistical information about x"

Let x be a random vector defined on the basic probability space (Q, F, P).

x is called a Gaussian random vector if it has the distribution law. [3]

1 (A) exp - -1(x m) dx (2.2.14)
x I~I~c 2(-m _Cxin xT2 Eli xeA.. .
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where

mAE{x}= x(w)p(dw) E x - m)( (- )'}
Jo

(2.2.15)

f J (x(w) - m)(x(W) - _)'p(dw)

m is called the mean or expectation of the random vector x, and Z is called

the covariance matrix of the random vector x. From (2.2.14), we see that

the statistical law of a Gaussian random vector is specified completely by

its mean and covariance. We shall always denote a Gaussian vector with mean

m and covariance E by the symbol C!(m, E).

Two Gaussian vectors x1, x2 are independent if and only ;f[ 3]

EIx1l E ~ x (w)x'(w)ii(dw) = wj~w 'wpdj

(2.2.16)

-- E{ _ x E _

Let x(t), t e [to, T], be a random n-vector process defined on the

probability space (Q, F, .i). x(t), t c [to, T], is called a Gaussian random

n-vector process if for any finite set (tl, ..., t m}, ti  t 0, T] the vector

- E(t, W)

is a Gaussian random nm-vector.

Another observation statistic which we shall consider in the later

chapters is the "Gaussian White Noise Process." Different interpretations

of this kind of process are available. One may view it as a formal deriva-

[41 (rcs 5 ]
tive of a Wiener Process, or as a generalized random process where the

observation space is the set of linear functional on the class of test
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functions. Wie shall not consider these interpretations in detail; no

matter what interpretation one adapts, a Gaussian White Noise, F,(t), has

the following properties:

1) 5(T)dT is Gaussian for all t c [to, TI withi mean

to

(t yl(t)dT and covariance R()dT, R(T) is measurable and

0 to t 0

in L2 locally.
2

2) J(T)dT, n T & .T)dT, t < t < t < T
ito t - f n l- 0 1 n

are independent.

Let Ft be the o-algebra generated by (T), t0 : t, then (2.2.12) and

the properties of Gaussian White Noise imply that

E a (T)dflFtl = CrM()dT (2.2.17)

tt

E- (T)dT)( )d- - 'IFJI J R(T)dT (2.2.18)
it f t )( tt t~

2.3 Linear Stochastic Difference and Differential Equations

Consider a discrete-time linear system described by

x(k + 1) = A(k) x(k) + J(k) ; k = 0, 1, ... . (2.3.1)

Let (2, F, p) be the probability space which describes all the underlying

uncertainties. Let x(O), (k), k = 0, 1, ... be independent Gaussian vectors

with statistical laws:

J]_ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _



(2.3.2)

[_,'k) "-G(_o _k)) ; =o .

Frc (2.3.1), since A(k) is li a: transformation, x(k) is also a Gaussian

vector, k = O, ... . [3) Lat f be some srai.-stic on (,:, F, ), and !.

F(f) denote the :-algebrz by f. Supse that f is independent of (i),

i = , k + 1, ... ; zhen for i k k. by (2.2.12), we have,

z-(i ') = AW*(i[f) a.s. ; k(i'f) E !x(i)!F(f)i (2.3.3)

and

+( !f) = A(i)t(i'f)A' (1) Rti) as.

(2.3.4)

Using (2.3.4) and (2.3.3), the conditional covariance of x(i) relative to

F(f , denoted by Z (Vaf), 'i Satisfy

.c(i + '-If) = A(i)!c(ilf)A' (i) + R(i) a.s. (2.3.5)

In addirion, if the conditional distribution of x(k) relative to F(f) is

Gaussian, then for all I > k, x(i) is a conditional Gaussian vector relative

to F(f). The statistical information of the statistic f is conzained in

F(f), but the ncessary statistical information of f about the uncertainty

of the future stare of te system, x(i), i -> k, is contained in the con-

ditional distribution of x(k) relative to F(f); and if it is Gaussian,

R(kif) and f(kf) completely specify the conditional distribution of x(i),

i k, relative to F(f). This is also referred to as the Markov property.
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In the above discussion, the observation statistic is completely

general. if the observation statistic Is linear in x(j), j = 0, 1, ...' k,

an6 so=e other Gaussian vectors, e.g., f = 1x(0 ). ... , y(k)}, and

y(i) = C(i) 7(i) (i) i = 0, 1, ... , k (2.3.6)

where -(i) is F-measurable, indepen-ent of _,(j), j Z k and of Gaussian

statist-cal I., i = 0, 1: ..., k; the. x() is conditional Gaussian rela"

rive to F(f). There may be other kinds of sat _sricai observations

Vwzich will induce a conditionral Gaussian la' on x(k), but in this thesis, we

shall only consider observation statistics of the type given by (2.3.6).

Consider a continuous linear stochastic system described by

ic(t) = A(t) x(t) + i(r) (2.3.7)

udher,_, A(-) is neasrtrable in t, and is locally bounded.

Let (:, F, .) be the basic probability space where x(t 0 ), .t)

t f fto , TO are statistics defined on .. Tbe solution of (2.3.7), x(t),

is defined as a process Vhnch satisfies the integral equation

x(t) = X(o ) + At)x(t)dT + .,(:)d: ; r [to, Tj (2.3.8)

Let -(t) be a Gaussian Whice Noise Process with

t2

0 -t < T (2.3.9)

I't 2  
t t 2

EI(I ".(T)d-r (-r)d-c) E= (-)d-. -2 0 < 1: <t T (2.3.10)

t 0< t- tt2t

From (2.3.8), we see that for T - t 2 > t 1 2 to

t tt2 r2

x(t2) = X(t ) + A(:)x(T)d + "_)d: (2.3.11)
L -tt 1t t1

K_________ ___
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We shall always assume that x(t0) and T E £ [to, ti, are independent

for all t > t Therefore x(t1 ) is independent of F(T), T C [tl, t], for

all t > tl. We can find the solution of (2.3.11), x(r), T c (t1 p T], by

successive approximation: t c [ti, T]

= " (t) = xtl) I A(.) ,T)dT + f W)& (2.3.12)

and

X(t) x(t ) + I A()X n_i(T)d- + E;(T)dT n = 1, 2, ... (2.3.13)-n -- itl -t- t

t1 1

By the assumptions on A(-) and R(-), this procedure will converge with

x (t) - x(t), t C [tit T] a.s., and x(t) satisfies (&.3.11).

Let f be an observation statistic such that F(f) and F(&(T), T e [ti, TI)

are independent. Supose that the conditional distribution of x(t1 ) rela-

tive ;o f is Gaussian. Then from (2.3.12) and (2.3.13), we see that the

conditional distribution of x ( t) for a fixed t c [t1 , T] is Gaussian rela-

tive to f, n = 0, 1, ..., thus x(t), for a fixed t c [t, TI, which satisfies

(2.3.11) is also condttionally Gaussian relative to F(f). Therefore cthe

complete statistical law of x(t) relative to f is described by its condi-

tional mean and covariance.

From (2.3.13), we see that for all n = 1, 2,

t rl 1 n-i

E- x(t) IF(f) = +Jt-A(T-& tA(-, A( n)dT ... de 1 }EjX(t 1 ) IF(f)} a.s.
t. -t -1 ± 1(2.3.14)
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Ejx (t)x'(t) F(f)~

-t r ! U-I
(i-+ ;,:1), AC'2)---

1 
1

"tI  n) t d( l) Ff

-t - n-(!+,~ ~ ~ ~ ~)- n"'l~ _A )-! a A T d))R

1 11

r r n-2 r n-i

+ A() A (C2) ..., An-

1 (n-2n-l
(c 2_ )dc .. .I a.s. (2.3.15)

Since x (r) - x(t) a.s., E{x (t)F(f)- E,'x(t)F(f)- a.s., and

E-x (t)x(t)YF(f)" - E~x(t)x'(t):F(f) a.s. Equations (2.3.14) and (2.3.15)

imply that as n - , E{x(t)F(f)} and E{x(t)x'(t)F(f); satisfy (a.s.):

_(t'F(f)) = A(t)Z(t:F(f)) t zt I  ; (t'F(f)) ="- E{xtlt)F(f)} (2.3.16)

7(t F(f)) --A(r).(t!F(f)) + Z(tF(f))A'(t) + R(t) t _ t

Z_(tIf'F(')) E~x(t)x'(t),F(f)} (2.3.17)

C
The conditional covariance of x(t), t 

> t,, denoted by : (t'F(f)) will then
I

satisfy

Zc(tjF(f)) = A(t)Zc(rjF(f)) + Zc (t.F(f))A'(t) + R(t) a.s. , t Z t: (2.2.18)

In the above, the observation statistic is completely general. If the

conditional distribution of x(t.,) relative to f is not Gaussian, then x(t),

t > t,, will not be Gaussian for any fi)ed t; however the conditional mean

and covariance of x(t), t Z tI, are still given by (2.3.16) and (2.3.18).

I3
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in this thesis, we shall assue that the observation statistic is of the

form

C(t) C(t) x(t) + T(t} , t - [t 0 . T] (2.3.19)

where n(t), t [0" TI is Gaussian white noise with

t2E - !( (O)d-: - (} (2.3.20)

t tL

and n(t), t e [t o , T) is independent of !(c), t E [te, TI, and x(t 0 ). With

such observation statistic. we see that F " FQyWt), T E ito, t,]) is inde-

pendent of E(T), 7 r Ft1 , T]; furtherore :i(t IF) is F -measurable and

x(t ItF t) is conditionally Gaussian if x(t 0 is Gaussian.[ 4 ] If

t 0 < t 2 ... < t , we have

F Fr ... F GF
c1  t2  t
1n

In the more general nonlinear case, the system is described by

_(t) = f(t, x(t)) + &(t) (2.3.22)

where &(t), t E [to, Ti, is a Gaussian white noise with statistical law

(2.3.9), (2.3.10), and f(t, x(t)) is F(;(7), T E [t0 , tJ)-measurable, the

solution of (2.3.22) is defined as the process which satisfies

rt rt
x(t) = x(to) + f(t, x(T))dt + j (r)dt a.s. t c [to, T] (2.3.23)

• to t0

00 0
If f(t, *)satisfies the Lipschitz condition
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:f(t' x1  f t• ) < i ; .1 2  R" (2.3.24)

where a is some constant; then the method of successive approximation by

setting x(t) = x(t0) and

rt 't[
x nt) = x(t0) + -n f -x (-))d- +  () n 1, 2, .. (2.3.25)

U

will converge almost surely to x(t), as P -
. [6] The interpretation we

used here is It&'s; the reason for adapting this interpretation is due to

the rich mathematical properties one can deduce and utilize by using this

interpretation. 1t6's theory in stochastic differential equation will not

be considered in here, the detail can be found in [1], [7], [8).

Let x(t) be a process described by (2.3.22) or (2.3.23): x(t) is

called a diffusion process [51' [71  Let C(-, -) be defined on T xR with

real scalar value, such that C (t, x), C t(t, x), and C xx(t, x) are defined

and continuous. The differential generator of x with respect to C is de-

fined by

£(C(t, X)) lim(s - t)i E{C(t + At, x(t + At)) - C(t, x(t)jx(t) = x1
s.t

[7',[81(2.3.26)
If x(t), t t [to, T], satisfies (2.3.22), then

£(C(t, x)) = (tl/2(t),C C, x)Rl (t) + f(t, x)'C (t, x) (2.3.27)

If in addition,

;C1 + jctl + j xlC + -xj2 C.cxxl k(l + ? 2 ) (t, x) c T xR'

(2.3.28)

K _ _ _ _ _ _ __ _ _ _ _ _ _ _
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then

C(t,x(t)) C(t 1 ,X(tl))+ [Z(C(T,X(T)) + C (T,X(T))]dr
Sti

-t
+ C_ (T,X(T)) '(T)dT (2.3.29)

tI

where now the last integral must be interpreted in the sense of It6. [171

Let F be the sub-o-algebra which is independent of F( (T); T C (tI, TI).
[1

Since [4]

El C(T, x(T))' (T)dTIF, 0 (2.3.30)
it

we have from (2.3.29) the ItA s integration formula:
[173,[4 ]

It

EIC(t,x(t))!FI} = EC(tI,x(t!)3F1I + Elf [Z(C(T,X(T)) + X (T,(T)]dIF 1 l
tl (2.3.31)

2.4 Stochastic Optimization

In this section, the mathematical tools for stochastic optimization

e.:.blems are stated, and the outline of the proofs will be given, These

stochastic optimization techniques will be used in later chapters to solve

different stochastic control problems.

Since we shall be considering linear systems with Gaussian disturbances,

the process which we shall control will be Gaussian. Thus an adequate de-

scription of the process is the evolution of its mean and covariance. As a

result, we shall deal with a set of deterministic equations which describes

the "trajectory" of the mean and covariance. In many cases, we can transform
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a linear stochastic control problem into a deterministic control problem

where the dynamics of the deterministic system are described by a set of

matrix and vector differential equations. After making such transformation,

the technique cf the matrix minimum principle can be ised to obtain neces-

sary conditions for optimality, 9  [i0] in the following way.

Discrete Time Control Problem:

A set of matrix and vector difference equations is given:

X(k + 1) - X(k) = F(k,X(k),r.(k),U(k))
k 0, 1, ... , N- (2.4.1)

x(k + 1) - x(k) = f(k,x(k),X(k),U(k)) = =0

with U(k) e S, constrained control set, X(k) M nm, x(k) c Rp . Consider the

scalar cost:

N-I

J = K(X(N),x(N)) + I L(k,U(k),X(k),x(k)) (2.4.2)

k=O

It is asbumed that F(k,-), f.(k,'), K(-) and L(k,') satisfy the conditions

required by the discrete minimum principle. The control problem is to

choose U (k), K = 0, ..., N - 1, such that the cost (2.4.2) is minimized sub-

ject to the constraint (2.4.1) and U (k) e S, k = 0, ... , N - 1.

Define the Hamiltonian function

H(X(k),x(k),P(k+l),p(k+l),U(k)) _ L(k,U(k),X(k),x(k))

(2.4.3)

+ f'(k,x(k),X(k),U(k))p(k+l)+tr{F(k,X(k),x(k),U(k))P(k+l)}

where P(k), R(k) are the costate associated with X(k) and x(k) respectively.

K
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Theorem 2.4.1: (Matrix Minimum Principle: Discrete Time)
* * x*

Let U (k), k = 0, ... , N - 1 be the optimal control and X (k), (k),

k 0, ..., N be the optimal state , then there exists a costate matrix

P (k) associated wiz tk (k), and a costate vector v (k) associated with

x (k) such that the following relations hold:

1) Canonical Equations:

(k + 1) X (k) 3 *P* a)IH ; x (k+ 1) (k) F(k+l) ,x (kk +-_ - a_(k +) ,i-

, , aHI * , aHi

P (k + 1) P (k) = aX(k) , p (k+l) - (k) ax(k)

(2.4.4)

2) Boundary Conditions:

* .

(0) R _ (0) -- o (2.4.5)

*(N) aK(X (N),x (N)) *( K(X (N),z (N)) (2.4.6)

3X (N) ax (N)

3) Minimization ef the Hamiltonian:

For every U S, and fer each k =O, 1, ... ,N -1

H1(X*k),x (k),P* (k+l),£ *(k+l),U*(k)) - H (k),x (k),P *(k+l),p (k+l) ,U

(2.4.7)

Continuous Time Control Problems:

A set of matrix and vector differential equations is giver:

_(t) - F(t,x(t),x(t),U(t)) ; x o)

(2.4.8)

_(t) = f(tx(t),X(t),U(t)) ; x(t) =X0
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with U(t) c S, constrained control set, X(t) c M ,m x(t) cR. Consider

the scalar cost:

J = K(X(T),x(T)) + [ L(t,Xtt),.E(t),R(t))dt ; T fixed .(2.4.9)

0 t

L The usual differentiability conditions for F(-), f(-), K(-), and L(-) areT,

assumed tobe satisfied. The control problem itochoose.! * (t), tc[o I

such that -he cost (2.4.9) is minimized subject to the constraint (2.4.8)

and U Wt c S.

Define the Hamiltonian function

(2.4.10)
f' (t~x~t) X~t) ,U~r))(t) + tr{F(t,X(t) ,x(t) ,U(t)P(t

where P(t), p(t) are the costate associated with X(t) and x(t) respectively.

Theorem 2.4.2: (Matrix Minimum Principle: Continuous Time)

Let U (.t), t e [to) TI, be the optimal control and X *C(), x * t),

t C [to) TI, be the optimal state, then there exist costates P*(t) , *(t

such that the following conditions hold:

1) Canonical Equations:

DPl ap___ t)1 (2.4.11)

X C) (t) ; A* (t) (2.4.12)1
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2) Boundary Conditions:

(to X x (to)= (2.4.13)

* 3K(X (T),x (T)) * K (T),2 (T)
(T) .(T) = ,(2.4.14)

(T) x (T)

3) Minimization of the Hamiltonian:

H W (t),£ P ,U W H(X t),X*(t),P*(t),P*(t),U (2.4.15)

for all U c S and t e [to, T].

The matrix minimum principle (both discrete and continuous) is a just straight-

forward extension of the vector minimum principle, Holtzman and Halkin

[33], Pontryagin, et al. (11]. Theoretically, Ehe justification of the

matrix minimum principle hinges on the existence of a mapping from Mnm to
mn

R m  The details were carried out by Tse [9]; see also Athans [12].

The matrix minimum principle only provides us with necessary conditions

for optimality. A control and its corresponding state trajectory which

satisfies the matrix minimum principle will be called extremal control and

extremal state trajectory. If one can prove the existence of optimal con-

trols and the uniqueness of extfemal controls, the matrix minimum principle

also served as a sufficient condition for optimality. But, in general, the

matrix minimum principle does not provide sufficiency. It will be convenient

if one can have some sufficient conditions for optimality, so that one can

easily test to see whether an extremal control is optimal or not. It turns

out that to look for sufficient conditions, it is often easier (and more

general) if we consider the original stochastic control problem without

transforming it to deterministic description in terms of mean and covariance.



Discrete Time Stochastic Control Problems:

A discrete time stochastic process is described by

x(k + 1) = f(k,x(k),u(k)) + &(k) k k0 , k0 + 1, ... (2.4.16)

with x(k) c R7, u(k) r RT . Let x(O), _(k), k = 0, 1, ... be independent

Gaussian Vectors defined on the basic probability spaze with statistical

law (2.3.2).

Let U(ko k) $ {u(k 0 ),u(k 0 + 1),...,u(k)} denotes the control sequence,

and g(k0), g(k0 + l,u(k0)), g(k0 + 2,U(ko,k0 + 1)), ... , g(k,U(k0, k - 1)),

... is a sequence of observation statistics which depends on control se-

quence, such that for all control sequences F(k,U(k0,! - 1) C F(k + i,U(k0,k)),

where F(g(k,U(kok - 1)) 4 F(k,U(k0,k - 1)). Let {W} (k)}N be the0 {2U(k0,k-l) k=k 0
process described by (2.4.16) when control sequence U(k0,N - 1) is applied.

Assume that W(k) is F(g(k,U(k0 ,k - l))-measurable when the control
U(k 0 k-1)

is restricted to be of the form:

u(k) = (k,g(k,U(ko,k - 1)) c S (a.s.) (2.4.17)

The control problem is to find air optimal control law (k, U (k,ok-l))

such that

N-1

J(U(k0,N - l)IF(g(k0)) = EIK(x(N)) + I L(k,x(k),u(k))IF(g(k0 ))J (2.4.18)

k=k0

is minimized subject to (2.4.16).

Theorem 2.4.3: (Optimality Criteria: Discrete Time)

* n
Suppose that there exists a control strategy ! (i,.): I(koNl] xR - S

[k0N~]Xn 1I

and a scalar function C(','): I xR R such that almost surely,

1) C(N,x) K(x) (2.4.19)
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2) 0 = ~~~, kx).~+, k-&,x) F(k,U(k0,k-i)):-C(k,x)

(2.4.20)

PE;L(k,,c,u):C(k+l*x (k--l,R)%,F(k,U(k 0 ,k-1))-C(k,x) a.s.

k k0, k 0 + 1,

where for k =k k 0 +1 .,

x(k + Lx~) =A~kx + B(k)-- (k,x) + Er(k) (2.4.21)

x (k + 1,x) = A'k)x +B(k-)u + Ik) ;u= S

i.e., u is an~y permissible contral value at k. Then the control la%,~

is optimal and C(k0 ,2i(ke)) is the optimzal cost a.s.

Proof: Let. x k),k =..........'14 be the random vectors which satisfy the dif-

ference equation (a.s.)

x (k + 1) A(k)x Wk + B(k)- (k,x (k)) + &(k)

(2.4.23)

x (k 0) x(k 0)

By using lemma 2.2.6, we have from (2.4.20) that: (a.s.)

C(k0 ,xi(k 0 )) = E{L(k0,xE(kO),j (k0,2x(k 0 ))+C(kd+l,x *(k+1) IF(g(k))

= EIL(k0 ,xt~k0 )) *(k0,x(k0))jF(g(k0 ))}

+E{E{L (k 0 +l,x *(k+l)j * (k0 +l ,x *(k0+l))

k0+ L ~ * * (kx* ()I~

k=k 
0

+E{C(k +2,x (k +2)) IF(g(k)) (2.4.24)



-27-

Inductively and keeping (2.4.19) in mind, we have

CM"o,_!(ko)) Et:(x ())+ . L(kx (k),_ -(k,x (k));F(g( ))t a.s. (2.4.25)

k=k0
-Now let Uo W". N); - ! e

= e , 1-() be -ay ad -issible control iwa of the for= (2.4.17).

Let 17(k), k r0 kI + 1, ... , N be the rando= vectors -hich satisfy (2.s.)

0 0 00
x(k + 1) = A(k)x (k) + B(k)!u_ (k) + _(k) ;x(k O ) = x(k 0 )  (2.4.26)

By (2.4.17), u°(k) is F(k,I°(k0,k - l))-ne-asurable. Using le-a 2.2.6 a--d

the inequality of (2.4.20), we have (a.s.),

C(ko ,x(' 0 )) _ EIL(k o ,x(k o ), 0 (k)+C (kO+ x 0 (ko+1 ) '1 F (g (o 0 )t

E{L(k 0 ,X(ko)),u°(k)'F(g(k )) +E-rIL (k 1 ,x(k 0 -1).. .(L+1))

+C (k0+2 , x° (ko+2)) !F (k0+[ ,_u° (k 0 M11 F (g (kO ))A'

k0+l=Ef L(k x'°(k),u (k )!.Ffg(k0)))]-+r-rC(ko+2,x(ko2))!-F(g(ko)

k=k0  (2.4.27)

Inductively and using (2.4.19), we have

N-I

C(k0,x(k0 )) <- EIK(xO(N)) + I L(k'x-(k),u°(k))!F(g(k0
) ) 1 a.s. (2.4.28)

k=k0

Combining (2.4.25) and (2.4.28) we have the assertion of the theorem.

Continuous Time Stochastic Control Problem:

A continuous time process is described by

"(t) = f(t,x(t)) + B(t)u(t) + &(t) (2.4.29)
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wnere x( - Rn. (t ) satisfies the Lipschitz condition (2.3.181.

- (x,) and I(:), , [to,Tj is white Gaussian .noise with statis-

itcal I-" (2.3.9) and (2.3.10). Denote the control UtOr) = .u(-),

: [tot). Let g(t,1Ut, t)) be an observation statistic suchi that if

ti!:-I MIM 0-2 F~l 't)) E" F(g~toU[tO'tl)) C F(g(t2, '[tort2) " (t2? [tost);

at t = to, g(toL'[tovt)) = g(t0 ) and is independent of control. Let

..[to (t), t - [tO,T]! be the process described by (2.4.29) when V[t_0T )

is applied. We assu=e that _ Ot)(t) is F(cU(t0 ,t))-=easura~e when the

control is restricted to be of the form

_u(t) = _(t,g(r,U[rO,t))) S (a.s. (2.4.30)

The control problem is to find optimal control law of the form (2.4.30)

such that the cost

JV(U(tol)'F(g(to))= E K(x(T) + T L(tx(t),u(t))dtcF(g(to))) (2.4.31)

is minimized subject to (2.4.29).

For a fixed control U0 [tT) of the form (2.4.30), we have a fixed

diffusion process described by

x(t) = f(t,x(t)) + B(t)u0 (t) + r(t) (2.4.32)

and we can associate with U0 (t0 ,T] a fixed differential generator £ ().

U
Let C(t,x) be a scalar function, we have

-1 R/2 1/) o(_.xx
(C(t,x)) tr (t,x)R (t)}4.(f(t,x)5I-B(t)u °t)) (2.4.33)

C (tx)



Theorem 2.4.2: (Optimality Criteria: Continuous Time)

Suppose there exists a control law : (-,-): [t0 .T) xR - S with (c,-)

satisfying the Lipschitz condition, and a function C(-,-): It0 ,T) xR
n - R

such that

1) C(t,x), C t(t,x), C X(tx), C (tx) are continuous and for

some k

C- + ICt + .xC + ,x i IC < k(l + x:) (,X)d-[t 0 2 T)xRn (2.4.34)

2) C(T,x) K(x) a.s. (2.4.35)

3) 0 = C (t,x) + E{ £.(C(t,x) + L(t,x,± (t,x))!F(t,U[to,t))}
t

< Ct(t,x) + E{ £(C(t,x) + L(t (t,x))F(t,U[tot))} a.s. (2.4.36)

for all (t,x)E[t ,T]xRn, and (t,) satisfies Lipschitz condition.
_ 09

Then ( Ct,x(t)) is the optimal control law and C(to.X(to)) is the optimal

cost a.s.

Proof: Let x (t) be the resulting diffusion process described by (2.4.32)

where ;e adapt control law ; (',')- Using the It6's integration formula

(2.3.31) applying to the process x (t), we have

E{C(tO,x*(t0))IF(g(t0))} = C(tx* (to)) = E{C(T,x*(T))IF(g(t0))}

- E j [90*(C(t,x (T)))
to

+ C Ot,x (r))]dtIF(g(t)) a.s. (2.4.37)

By lemma 2.2.6 and Equation (2.4.35), (2.4.36), we obtain
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C(to0 x (to)) = E'EiC(Tx (T)):F(x (T))-,F(g(to))

.

EIE I (Iz)))

+ C_ (:,x (:))]d: F(t,U[to)) F(g(t0))

-T : -T

- EjK(x (T)) + L(:,x (:),:(:,x (:))d: F(g(to))

a.s. (2.4.38)

Let :(t,-) be any control law which satisfies the Lipschitz condition, and

x (0W be the resulting diffusion process described by (2.4.32) when control

law :_(t,-) is used. The !t6's integration formula, applied now to the

0
process x (t), gives us

*T
C(oX (t = EC(Tx 0 (T)) F(g(to)): - Ef [£ o(C(,x°( C)))

• to-

+ C _(z,x°(:))]d<'F(g(to)) I

-S EIK(x(T)) + I L(-,x 0 (-)°(-,x(-))d: F(g(to))I _a.s.
to

0
0 t(2.4.39)

where the last inequality comes from the inequality part of (2.4.36), also

lemma 2.2.6 is being used in deriving (2.4.39). Note that C(',') is de-

fined on [t0 ,T)xRn; now equations (2.4.38) and (2.4.39) yield the statement

of the theorem.

2.5 Generalized Matrix Riccati Difference Equations

For a given sequence of matrices 
V L Vk , V(k)

k0 + 1, ..., let {P (k,ko;F be the sequence which satisfies the linear

matrix difference equation:
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P (k+l,k 0;F) = (A(k)-V(k)D(k)A(k))P (k,k0;F)(A(k)-V(k)D(k)A(k))'

+ I-V (k) D(k)) i (k) I-V'(")D',k)) 'q2(k)-Ql (k)+V(k)R(k)V' (k)

Pv (kok0F) F (2.5.1)

where A(k) M , D(k) c M are bounded uniformly for all k. We assume

that F, Ql(k), _Q(k) are symmetric nonnegative definite nxn matrices with

Ql(k) - Q2 (k), k =k 0 , k0 + 1, ... , arud that R(k) is symmetric nonnegative

definite mxm matrix. Since (2.5.1) is linear, therefore for any arbitrary

V(k) - Mn, k = k0 , k0 + 1, ... , :P(k,k0;F)-kk exists, is unique and

P V(kk 0 ;F) _" 0, k = k0, k 0 + 1,....

When V(k) ranges over mnm, k = k0 , k0 + 1, ... , we generate a solution

set =(P (k,k;F)). _V(k) . M nm 0 , k 0 + 1,...}. All elements

in the solution set 0 is a sequence of symmetric nonnegative definite
k0

nxn matrices.

Definition 2.5.1: (Minimal seqcice) Let Lk0 = (M(k)) k  IM(k) - Mn'

(k) _> 0, k = k0, k + 1. ; an element (.A!O(k))k E k is called a0'0 
-Z k=k 0 k0

minimal sequence with respect to 0 if for all (M(k))k E we have

0 k- k k 0 k ,ehv
.M (k) -, M (k), k = k 0 , k 0 + 1,....

For a given set Lk, a rinimal sequence may not exist; but if it

exists, it must be unique. In the following, it will be shown that the

solution set Rk has a unique minimal sequence.

Let us define the matrix ? (V,P) by (k = k0, k0 + 1, ... )

.(V,P) = (A(k)-V D(k)A(k))P(A(k)-V D(k)A(k))'+(l-V D(k))QI(k)(I-V D(k))'

+_2 (k)-Ri(k)+- R(k)V_ (2.5.2)
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where V , P " F .red p , define the set
n- ' - nn - n f

(P) = .V_ s :!n (*)k is satisfied- where the condition (*)k is given by

S"R(k) "k) ( k)+A(K)P A' (k))D' (k) -A(k)P A(k) .§ (k)1'1(k)

We have the following lemma:

Lemma 2.5.2: (Minimum property) Let P M nn and ? 0; if V " k()-_ _ - - n ' -- - -

then for all V r .M :
- nml

N ) (,P) ; k = k0 , ko + 1, ... (2.5.4)

Proof: Let us denote

_(k,P) = R(k) + D(k) (Q. (k) + A(k)P ' (k))D' (k)

(2.5.5)

k = ko k0 + 1,...

The conditio (*)k can now be wr-tten as

k ((k,P) .A(k)P .(k) - (k)) D'(k)

k = k0, k0 + 1,

LetLr.k(P), . must satisfy (*)'; and so for V r Mnm, we have

Ck (, P)+ (V- ,) R(k, ,P) (V-V) '

= A(k)P A'(k)+2 1 (k)- ' D(k)[A(k)P A'(k)+ 1 (k) -[A(k)P A' (k)+_q (k)]D' (k)V (k)

+2 1 ft(k,P)I '+02 (k)-ql(k)+V k(k,P)V'- ' R(k,P)V'-V R(k,P)D

= A(k)P A'(k)+91 (k)+ 2 (k)-.V _(k,P)V'-(A(k)P(k)A'(k)+_! (k))D'(k)V'

-VD(k)((k)+A(k)P A'(k)) = k(V,P) k = k0 , k0 + 1, ... (2.5.6)
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Since R(k,P) 0 0, (2.5.4) follows from (2.5.6).

An immediate consequence of the lemma is that

VI(Vz,P) (PV)2  k (2.5.7)

Theorem 2.5.3: There exists a unique minimal sequence, {P (k,k0"F'k0 ,-_ .k=k 0

with respect to the solution set Pk0.

Proof: Let us const:uct the sequence {P(kk0;F)ikk as follows: Set.
00 k 0

P (kk 0;F) = F, and choose V (k) k0k (F). Such a VO ) may not be

unique, but by (2.5.7) and (2.5.1), this gives rise to a unique

P0°(k 0 + l,k0 ;F) = k (V_°(k 0 ),F), V(k 0 ) k 0 ).

0
Assume that V (k), k 0  + 1, ..., k0 + i, have been chosen induc-

tively with V°(k) t,_ k(P (k,k0 ;F) and a unique sequence

P (k+l,k0 ;F) = jk(V°(k),P°(k,k0 ;F)) , k = k0,k0+l,...,k 0 +i (2.5.8)

has been constructed. Choose V0 (k0 + i + 1) C V kC+i+l(P 
0 (k0 + i + 1,k 0F)).

By (2.5.7) and (2.5.1), this gives a unique

0
P(k0+i+2,k0)= . V l  + i + 1,°kilk0F)(2.5.9)

0.0; .) .-i-k0 i l "- "0 -" --

The sequence P2(k,k Mk thus constructed is unique.

LetV ={V(k),kko be an arbitrary sequence with V(k) M k = ko,

K0 1, .... By lemma 2.5.2,

P (ko+l,ko;F) -> P0 (ko+l,k0 ;F) (2.5.10)

Assume that for i -2 1,

P (k0+i,k0 ;F) -P 0 (k0+i ;k 0 ;F) (2.5.)

"I
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From (2.5.1) and (2.5.2), u 'r a given '
- nm

V,P 1) Z .. ..z) [f P- . " 0 , k = 1,... . (2.5.12)
kI ( .2 ) (2. (2 . 0, h v

Combining (2.5.1), (2.5.2), (2.5.-), (2.5.11), and (2.5.12), we have

(k +i+ ,k = -i " . ... *+ki;

_L, - (k0+i)P -'k0-"k0;F)) 1.7((k0) ,P (k+i 0 .E)

.i(V°(k 0+i),P
0 (ko4-i,ko;F)) = 0 (ko+i,ko;F) (2.5.13)

The theorem follows from induction.

Definition 2.5.4: The set of equations

P(k+l,k0 ;F) = (I-V(k)D(k)) (A(k)P(k,k0 ;FI)A' (k)+_l(k)) (I-V(k)D(k))'

+Q2 (k)-Ql(k)+V(k)R(k)V' (k) ;P(k 0 ,k0 ;F) = F

(2.5.14)
V (k) (R )+D(k) (A(k)P(k,k 0 ;FE)A' (k)+4l (k))D' (k))

= (A(k)P(k o;F)A'(k) 4 a, (k)) D'(k)

is called the generalized Matrix Riccati Difference equation, and the

unique solution is called the Riccati sequence, which is also the minimal

sequence with respect to Rk0 "

The above definition is meaningful because of theorem 2.5.3. In the

special case when R(k) or D(k)9l(k)D'(k) (or both) is positive definite,

then (2.5.14) can be written as a single nonlinear difference equation:
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{(k)+Dk)(=A(k)P(k,k ;F)A' (Ik)g 2 (k)- [A(k)P(k,k ;F)A' )q (k) 'C)

PE(kk 0 ;F) = F .(2.5.15)

Equation (2.5.15) is the Matrix Riccati Difference equation. [8,L9

2.6 Generalized Matrix Riccati Differential Equations

Let V(t) be arbitrary bounded measurable nxm matrix defined on [t,,TJ.

Let P v(t ,t 0;r) be nxn matrix defined on [t ITi which satisfies

(t' ;E) ((t)-(t).2l(t)+F(I ,t;F+ _ iO;E)- t-~)lt)

-'!~t)q~)V'(t)(I-.(t)R 2 (t))R(t) (I_-VY(t)D2 (t))' ;

p vt 0 ;F) =F 2 0 (2.6.1)

where A~t) is nxn, D 1 (t), 22(t) are mxn; E(t) is nonnegative definite nxn

matrix and _Q(t) is mxm nonnegative definite matrix Call matrices are

assumed bounded measurable). Since (2.6.1) is linear, the solution

P C tt 0 ;F), t E: [t 0,T], exists and is unique for a fixed bounded measurable

V(t) (nxm) defined an [c,$Tj.

When V(t) ranges over the set of all bounded measurable mxm matric~es

defined on [tOT], it generates the solution setRT = (P v t't ;F),
0

t C [t,,T]JV(t) is bounded measurable nxm matrix defined on [t0,T]I.

Definition 2.6.1: (Minimal function) Letj ~t = {m(t), t C [t0,TJJMIt) a 0,

0 T. 0
t C, [t0,IT~J . An element M() A t is called a minimal fun~ction with res~ject

0

to 0 if for all M(-) T M 0 ( Ct) M ~( t) , t e rt0,TJ.to to0

Let us define

I~tjt)) - (t -~21M(26)

L_____ ______________________ _________ _______________________________________
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The solution of (2.6.1) is given by[34
]

t
Pv(t't;.F) _A(t,to).F _.(t,tO) + JA(t,T){V(T)_(T)V'(T) +

0
I- V(T)D 2 (T)I'R(T) [I n - V(T)D 2()]'1 ±j(t,T)d T (2.6.3)

Since F, R(T), _q(T) are all nonnegatIve definite matrices, we have

Pv(t,t0;F) - 0 ; t C [t 0 ,T] (2.6.4)

Define the matrix

_(t,V,P) _(tV)P + P _'(t,V) + V q(t)V' +

(In - V 2 (t))R(t) (In - VD 2 (t))' (2.6.5)

where V is bounded nxm matrix, and P is bounded nxn matrix. For a fixed

P E M define the set is = V M * is satisfied where (*) is-- nn - - nm t

the condition

(*)t VQQ(t) + D2 (t)R(t)D'(t)) = P D'(t) + R(t)D'(t)

Lemma 2.6.2: (Minimum Property) Let P e M, and P > 0; if V E 't(P),-- nn' - - - --

then for all V E M ,we have

_(t,V,P) 
> _(t,',P) , t E [t0 ,T]  (2.6.6)

Proof: Let cV 1t (P), by using (*)t we have
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=AWtP-V D (t)P+P A' (t)-P D{(t) '+R(t)-l .D2 (t)R(t)-R D'(t) ,'

=A(t)P-V D I(t)P+P A' (t)-P D{(t)V'+R(t)-V D2 (t)R(t)-R Dl (t)Vl

_t-(D (tRt t)__) = Y'(t,V,P) t C 1t0,I . (2.6.7)

Since R(t) 0, _q(t) a 0, (2.6.7) implies (2.6.6) irnmediately. From the

lemma, we have

Wt,V 1 P) = 'Y(tV , 2 '-L) if V IY2 E If(P) .(2.6.8)

Theorem 2.6.3: There exists a unique minimal function P0 (t't 0 ;F),

t E: [tOTJ, with respect to the solution seti T3
to0

Proof: Let us construct a sequence {P (t ,tO;F)1c as follows: Set
-k' O k=l

.Llt~t0 ;) =0, choose bounded measurable V I (t) E: lI (P (t t *F) t c e I1

Denote P 2(t,t 0 ;.E) = PV (t,t0 ;.). Having chosen boainded measurable

Yj.(t) C "; (P i(tt 0 ;F), t E:s O)j for i = 1, . . ., k, let.EP (t ,to ;F)

P k(t't 0 ;F), t c (t 0,r]. Using lemma 2.6.3, for k > 1:

dt-=IP(t' yk (t),P(t,tO;F))I'(t,V(L),P (t,t ;F))

A(tV (0)) (tt;) l

(P( t' _)~t\ t) (2.6.9)

k ' kl b



-38-

Since Pk (tO,to;F) = L.. (to,t -= .(9) implies that for k - 1:

Pk(t,tO;F) Z,;. - t E [t0 ,T] (2.6.10)

Therefore, there exists Pa(t, 0 ; F ) such that

lim P(t,t0;F) = P°(t,t0;F) (2.6.11)

k-

Let us define, for k > 1, the matrix Pr,t 0 ;F) which satisfies

Pk(tt 0 ;F) = :(ty ._(t),pyk l(t,t 0 ;F));pk (t 0 ,t 0 ;F) F (2.6.12)

Clearly, P'tt&0) 0, t -t 0)TI, and

d(Pk (t',t;F) - P(t,to;F))
-- --____ _0 = . tV lt)(Pl(t~to;F) - Pk (t.to;F))

dt - '- - 0

+ (t_(t,t0 ;F) - Pj(t,to;F)A' (t,Vk l(t))

(2.6.13)

Since A(t,Vk (t)) is bounded measurable in (t0 ,T], taking limits on both

sides of (2.6.13) and using (2.6.11), (2.6.12) we have

:( t V°( ) ,p0 0 ;F)) = l im pk (t ,t 0;F 
=  i .~t; ) = (~0 ;

. . .. k-) - - k-co

(2.6.14)

where V° (t) "(P °(t,t ;F), t E [tasT].

Note that the choice of the sequence 'V (t) i= is nonunique and so

the sequence {P.(t,t ;F)!i= thus constructed is nonunique. Let V.( i I

-1 0'- = -1 l

be another chosen sequence where for i z 1, V.(t) E bt(P~.(t,t0;F)) 
and

(tt0;F)= 0, P. 1 (t,t0 ;F) = P (t,t0 ;F). Let

lim (t,o ;F) o(tt ;F) (2.6.15)
k--
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Then _°(t,t 0 ;F) also satisfies

P (t,t 0 ;F) = -'(t,v (t),P (t,t 0 ;F)) ; P(t 0,t 0 ;F) = F (2.6.1.6)

-0o-where V t) E Is t(P(t,r 0 ;FD), t E [t 0 ,TIo Using lemma 2.6.2, we have

(t, t - ;(tt0F) q(t,o(t),o(tt- ;F) - Y(t,V(t),Po(t,t

- (,v(t),_o (tt o ;F)) - y(t,V (t) PO (t ;F))

= A(t,V_0 (t))(o(t,t0;F) - pO(tt0.F)) +

(P(t,t0 ;F) - P(,t 0 ;F))A(t,V°(t)) (2.6.17)

We conclude that _0 (t,tA;F) P0 0(t,t 0 ;F), t E [c0,T]. We can interchange

between P°(tt 0;F) and °(t,L0 :F) in (2.6.17) to obtain Po (t;tF) < P(t,t0;F ) .

Therefore we have the unique.iess of the function P0 (t,t0 ;F).

Let V(t) be an arbitrary bounded measurable nxm matrix. We have as

before:

v (t, t 0 ;F) - fo (t,t 0 ;F) - V(t,V(t),P (t,t o ;F)) - -Y(t,V (t) ,PO(t,t0 ;F))

->"(t ,V (t) ' Pv (t, t o ;F) ) - 7(t ,V(t) ,P (t, t o 0;E))

_(t,V(t))(P (t,t0 ;F) - P(tt 0 ;F))

+ (P (t,to;r) - P(t,t0 ;F))A'(t,V(t)) (2.6.17)

and so P (t,t0 ;F) z P°(t,t0 ;F), t c [t0,T]. This completes the proof of

the theorem. Note that the proof alse gives an explicit algorithm to find

P0 (t, t0 ;F).



Definition 2.6.4: The set .

~( . . . .. . . ; )+P(t,t0 ;!')(A (t)-V(t)D1 MY)

~+V(t)9(t)V' (t)+'.n-V(t)D9 (t))R(t)(lIn-V( t)Do)(t))' ; P(t 0 ,t 0 ;F) =F
V~t)Q~t)D2(tR~t) (t2 (t) P~t(t 

0='t+~) r

-- (t, t0,;)Dl() (2.6.18)

I is called the generalized 'Hatrix Riccati Differential Equation. The uniqueJ solution P(t,t 0 ;F), [t0,TJ], is called the Riccati function, which is

Salso the minimal function with respect to the solution set %T

t 0If L(t) = q(t) + D9 (t)R(t)D;(t) > 0. then (2.6.18) reduces to a

single nonlinear matrix differential equation:

(tc 0 ;F) = (A(t)-R(t)D(t)..-(t)D (t))p(tt0;F+p(

-R(t)D' (t)C 1 (t)_

i ~~-P(t,to ;E) D1 (t) .'_- ! (t) D_ (tP(t, to ;F)+R (t-R(t)Da2 ( ) ,i(t)D (t)R(t)
=Il - 2

P(to , 0 ;F) = F (2.6.19)

Equation (2.6.19) is the Riccati Differential Equation. (311,[32]

In the general case, for a fixed bounded measurable V(t), t s [t 0 ,i]:

P v(t,t 0 ;Fl) -> P v(t,t 0;f 2) if F-I 02 F -2 (2.6.20)

Let Vl(t) C 1t(P(t, t0 ;F)), t E [t0,T], where P(t,t 0 ;F,) is the Riccati

function satisfying (2.6.18). By theorem 2.6.3. we have for F1 4 F 2

E 0; - P (t ;F) P (t,t0,F1) = P(trt;F ) t t [tTJ (2.6.21)0- L -) l 1 ; t '[ 0 ,T 2 .6 .21)

-- vI
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2.7 Perspective

:easure tneoretie approacaes to probability theory can be found in Loeve

[2j, Doob [1]. The notion of statistics as used here was introduced by

Halmas and Savage [13]. The term observation statistic is used so as to

conform with physical interpretation. Conditional expectation and condi-

tional distribution of a random variable (or vector) are treated in detail

by Doob [1]. Conditional independence of sub-a-algebra was treated by

Meyer [14]. This is a more general and more intuitive definition of inde-

pendence. Gaussian random vectors and Gaussian random processes are treated

by Doob [1], Loeve [2], Cramer [15], Davenport and Root [3]. Gaussian white

noise process viewed as the formal derivative of a Weiner process is

treated by Wonhar. [4], McKean [16], It6 [17]; Gaussian white noise process

viewed as a generalized process can be found in Tse [5], Gel'fand and

Vilenkin [181.

Linear transformation of a Gaussian Vector is treated by Davenport and

Root [3], Cramer [15], Doob [1]. Stochastic differential equations are

studied by It6 [171, Stratonovich [19], Wong and Zakai [20], Tse [5], Clark

[21J. Different interpretations to the stochastic differential eauations

are possible, some are in accordance with physical interpretation [19],

[211 while some in terms of mathematical rigor. [1 7  in the linear case,

all different interpretations are equivalent. The treatment used in

Section 3 is consistent with all interpretations. The diffusion process is

treated following Wonham [22] using It6's interpretation, for a detailed

discussion on the differential operator of a diffusion process, see Dynkin

[7]. The proof of It6's integration formula is given by It6 [17], Skorokhod

[8], Wonham [4].

"P
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Matrix Riccati Differen.- equations are not treated in detail i te

existing literature. Deyst and Price [28], Sor-nson [291 and Aoki 1301

considered the matrix Riccati difference eauation which appears in filterinz

problems. Their considerations are restricted to a special, yet a large

class of problems. The treatment given here is n , and the intrinsic

properties of the matrix Riccati difference equatiot are revealed. The

definition of generalized matrix Riccati difference equations and Riccati

sequences are due to the author.In the continuous case, Kleinman [31],

Wonham [321 had made detailed instigations. The approach used here is due

to Wonham [32]. The generalization given in Section 6 is new, and the

definition of generalized matrix Riccati differential equations and Riccati

functions are due to the author. The motivation for this generalization is

to bring out the most intrinsic properties of the equation and its solution.

As we shall see in later chapters, this generalization allows us to under-

stand the structural behavior of estimators and closed loop control systems.



CHAPTER III

OBSERVER THEORY FOR DISCRETE-TIME LINEAR SYSTEMS

3.1 Introduction

The problem of estimating the state variables of a dynamical system

given observaLions of the output variables is of fundamental importance

.n tne design of an optimal control system. If one considers the class of

linear systems, then there are two approaches available in the literature.

If the output variables can be measured exactly,and if there are no other

stochastic disturbances acting on the system, then one can use a determin-

istic observer (see references [35], [36]). On the other hand, if all the

output variables are corrupted by additive white noise, then one can use a

Kalman filter (s':e references [391, [40], [371, 110]) for state estimation.

The-e are many cases in which some of the output variables are noise-

free while others are noisy. One can argue that no measurement is exactly

noise-free. On the other hand, :±'ere are many engineering systems in which

the accuracy of measuring one variable is much greater than the accuracy

of measuring some others. In such problems the measurement covariance

matrix is almost singular and it can lead to ill.-conditioned matrices and

numerical problems. Thus, one can attempt to model the very accurate

measurements as being deterministic.

The main purpose of this chapter is to examine this class of problems.

In this contribution we examine the state estimation problem for linear

disc-ete-time time-varying dynamical systems. The continuous time case will

be considered in Chapter IV.
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,I



I

The structure of this Jhapter is as fol.lows. In Section 3.2, we focus

our attention to time-varying deterministic systems, we defire the notion

of a deterministic observer and estimator, the class of equivalent observers,

and the class of minimal order observers. In Section 3.3, we extend the

deterministic notion to the class of stochastic systems where we show that

the class of equivalent observers yield unbiased estimates. Then we determine

tie class of observe-s that yield minimum variance eftimates by formulating

the problem as finding the minimal sequence of a certain solution set and

then make use of theorem 2.5.3; we then prove that these observers yield

indeed the conditional mean estimates of the state. Naturally, if the obser-

vation covariance matrix is positive definite one obtains the well.-known

Kalman filter. In Section 3.4, we examine in detail the case that some

measurements are noisy while others are noise free. Under these conditions

we show that the order of the minimal order observer is less than that of

the state to be estimated. In Section 3.5, the notion of derectability is

defined and the relation between detectability and observability of dis-

crete linear system is considered; also in this section, we generalize the

results of Kalman [41] on deadbeat deterministic observers to the time

varying case. Using the concept of detectability, we derive necessary and

sufficient condition for the minimum error covariance to be uniformly

bounded and to have a steady state behavior. This is carried out in Section

3.6. In Section 3.7, we have general discussions on the approaches and re-

sults. In Section 3.8, detailed literature connected with the development

in this chapter is listed.
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3.2 Classes of Observers for Deterministic Systems

In this section we shall consider a linear time-varying discrete system

gdescribed by

(state eq.) x(k + 1) = A(k)x(k) + B(k)u(k)

(output eq.) y(k) =C(k)x(k)I

n rM
where k =0, 1, 2, ... , x(k) e R , u(k) L Rr, y(k) c R ,and CWk is of rank M.

Let M mnbe the set of all mxn matrices with real entries. If m :S n, the

null space of a matrix M, E 1  will be denoted by N(M) = {x e Rn; Mx = 0 ,mR .

Definition 3.2.1: Let C(k) c M be of rank m; the set

'i(M~);m,s,n) [ T(k) E M X :N (T (k) )fn~(C(k)) 0 n Rn)

is called the set of complimentary matrices of order s for C(k) if s Z n -m.

We note that T(k) e 2(C(k);m,s,n) if and only if there exist P(k),

V(k) of appropriate dimensions such that

P(k)T(k) + V(k)C(k) =I n (I n E ). nn (3.2.1)

Definition 3.2.2: A discrete linear time varying system of dimension

s lxi- m described by the relation

0z(k + 1) = F(k)z(k) + D(k)y(k) + G(k)u(k) (3.2.2)

is called an s-order observer for the system 9 if by some appropriate

choice of z(Q), we have

z(Q) T(k)x (k) for all k =0, 1, %'. 3.2.3)

for some T(k) E: 2(C(k);m,s,n), k =0, 1, 2......We shall also say that
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the observer is described b- C-. , -ni refer to such an observer by the

If QT is an s-order obserxer for 8., than by an appropriate choice of

z(0), we can reconstruct x(k) by

w(k) = P(k)z(k) + V(k)y(k) = P(k)T(k)x(k) + V(k)C(k)x(k) = x(k) (3.2.4)

where P(k), V(k) are chosen to satisfy (3.2.1).

in the following theorem, we prove that a class of observers can be

constructed for any linear discrete ;--.e varying system.

Theorem 3-2.3: Let T = -T(k)~k= be any sequence of matrices in Ms such
-k=0 ns

that T(k) E .4(C(k);m,s,n). Thet, there exists an s-order observer, T for

Proof: The proof is a constructive one in which an explicit form of (T is
T

obtained. Let T(k) ,!(C(k);m,s,n), k 0, 1, ..., be given. Pick

F(k) = T(k + l)A(k)P(k) (3.2.5)

D(k) = T(k + l)A(k)V(k) (3.2.6)

G(k) = T(k + l)B(k) (3.2.7)

where P(k), V(k) satisfy (3.2.1), k = 0, 1, 2, .... Then

z(k + 1) - T(k + i)x(k + 1) = T(k + l)A(k)P(k)(z(k) - T(k)x(k)) (3.2.8)

Therefore, if we choose z(0) T(0)x(0), we obtain

z(k) = T(k)x(k) ; k = 0, 1, 2, ... (3.2.9)
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The observer described by the given sequence T has the explicit form:

c:z(k+l) =T(k+l)A(k)P(k)z(k) + T(k+l)A(k)Vy(k)y(k) + T(k4-1)B(k)u(k)

(3.2.10)

To an observer 0 we associate an estimator P- describdbLseFgr
T T

3.1)

z(k+1) = T(k+l)A(k)P(k)z(k) + T(k+1)A(k)V(k)y(k) + T(k+l)B(k)ua(k)

P- (3.2M1)
T

w(k) = P(k)z(k) + V(k)jy(k)

where P(k), \'(k) satisfy (3.2.1) for the fixed T(k), k =0, 1......By

setting j(0) = T(0)'x(0), w (k) will equal x(k) by (3.2.4). But in most

cases, the initial state x(0) is unknown. We shall fix the initial condi-

tion for the observer G1by the rel.- ion

z(0) = T(0)a (3.2.12)

where the vector a is a guess for x(0). Thus a is any vector in Rn, and

the possible values of z(O) will be in the range space of T(0).

Let V - t'V(k) k=O be any sequence of matrices in M .m Let us associate

with the given sequence a sequence of sets where

a ={) T(k)cMj _ 1(k)T1(k)+4V (k)C(k) =I nfor some P(ke s ;s2:n-m}

k =C, 1,

If T =(T(k))ko is a se~quence of matrices i~n M such that
k=O sn

1,(k) c 9 3 ) k = 0, 1, 2, ... , then we shall in short write T E: %. Now

let T c , by theorem 3.2.3 we can associate to every such T with an
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Observer GT and an estimator Pl. Thus, we can associate with any fixed

V a class of observers of different orders.

Suppose that for a fixed V, the sequence of matrices {(I - V(k)C(k))}-n

k = 0, 1, 2, ... , has rank n - p; then the class HP = {(91T c JV' and

T(k) c Mn(n-p) has full rank, k = 0, 1, ...) is called the class of minimal

order observers associated with V.

Definition 3.2.4: Let L1 be a linear discrete system described by

xl(k + 1) = Fl(k)xl(k) + Gl(k)u(k)

L1: (3.2.13)

y (k) = C (k)xl(k) + D (k)u(k)

with xi(0) XI C Rn. We shall say that L2, described by

X2 (k + 1) = F2(k) 2 (k) + G2 (k)u(k)

L2 : (3.2.14)

X2 (k) = C2 (k) 2 M(k) + D 2 (k)u(k)

with x,(0) c X2 C R, is an equivalent representation of L1 if for any

-l c X1, there exists a a2E X2 such that

k
±l(k;3luk) = . 2(k;,2ku) Vuk ={(i)}i=0  (3.2.15)

where Ji(k; iu is the output of the system L. for x.(0) = B. and applied
2. =k

control

Equivalent representations may not be symmetric, i.e., if L2 is an

equivalent representation of L this does not imply that LI is an equivalent
1,1

representation of L If L and L2 are both equivalent representations of

each other, then we say that L and L are equivalent.

i
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observ-er, Gr., wnin is an cav I1en: represent~ation of 6-,. wiith S ! s-
I I

-beoren 3-.2.3.: Let 1: MY-~ be a fixed sequsence Of =ntrices iaN

che cliass of 6cbserv~ers G-. T a re eqUialen t.

- ~ ~ Ve~

P'rof: Let bean- two %:tiators, T, E ;, described by

z (+) Tk1Akk (t (k+k+) Wkv() + T (k+1) B(k) u(k)

(3-1.16%

%FCK) M ()z(k) -- NW(k) z(O) S iT(O)a' R71

i t(k+1)A(k)?(k)i(k) + t(k4-1)A(k)V(k)X(k) + ~k1Bkuk

(3.2.17)
To

~(k) =P(k)i(k) + V(k)y(k) ; ~(0) (0 a ITO~v E

Let z(O) =T(O)a. 1  S be the iniLjial condition for 0. Choose

i()=T(O)s 1 c S be the initial conditio~n for 0Lthen for all v(O):

L,(O) =P(O)T(O).E 1 + v(o)X(o) = P(o)t(O) 1 1 + 'J(O)y(O) i*(O) .(3.2.18)

Assume that w(k - 1) = ,(k - 1), then

H(k) =P(k)j(k)A(k)w(k - 1) + V(k)y(k) + P(k)T(k)B(k)u(k)

= (k)i(k)A(k)w(k -1) + V(k).y(k) + iP(k)t(k)B(k)u!(k)V7(k
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Fr= (3.2.18) and (3.2..! we concleue that

W(k) = i-(k) fcr all k . (3.2.20)

Ccversely if z(0) = T(O)_ 2  e S, pick z(O) = 7(0)=, S' &.en we also have
that th.e ouput of s.. and thac of d are the sa=e. Thus are equiva-

lent, =d are equivalent.

Thus, for a fixed sequence V, we can associate with a class of equiva-
lent observers G! T Rh I. en V ranges over all possible sequercrcs, we

T V

ohzain different classes af observers parameterized by the sequence V. In

a vague sense, the class of observers G T c 0., utilize the same. amount

of inconing information provided by the observations v(k), k - 0, 1,....

The notion of efficiency of a system, as regard to the processing of in-

coming infor-ation, is(in a ±oose sense)a ratio between information utilized

and the complexity of the system. Thus for a fixed V, the most efficient

system associated with it is the class of minimal order .bservers, rp. In

view of the above discussion, the design ot appropriate observer for esti-

mation and control purposes can be split into two distiL.ct steps: 1) to
.*

find the appropriate V which specifies the operating performance of the

class of observers, 2) to find an observer in the class of minimal order

observers, r*
iV

3.3 Optimum Classes of Observers for Linear Stochastic Systems

Let us consider the stochastic system S2 describee by

x(k + l) A(k)x(k) + B(k)u(k) 1- (k)

(3.3.1)

y(k) = C(k)x(k) + _n(k)



ere (0).I -(G), -(, . -, ... dre independent G-aussian randc-.-

vectors With sracistical a'.

,) (- > _ (3.3.:.)

-(k) G (0, R(k)) ; 0() 2 0 (3.3.3)

(k) G (0, 1(k)) ; R(k) -> 0 (3.3.4)

The ccntrol utk), k = 0, 1, . i., is ax arbitrary but knowa sequence.

Let V = .V(k)-kO be an arbitrary sequence of matrices in - If We
1

use an estimator eT, T s J for S3 to generate an estimate of x(k), then

the error e(k) A z(k) - x(k), can be comnuted from (3.2.11) and (3.3.1).

By picking z(O) = T(O)x , the error dynamics are given by

e(k+1) = [I-V(k+l)C(k+l) ]A(k)e(k)+V(k+l)n(k+l)4-(y_(k+l)C(k+l)-l .WCk)

(3.3.5)

_eCo) = [I-V(O)C(o)l[x -x(o) ]+v(o)n(o)

So explicitly (3.3.5) reveals that al estimators T give the same

error dynamics ,which in some sense reflect the state of uncertainty of the

system S2* From (3.3.5) we see that

E[e(k)] = 0 ; k = 0, 1, 2, ... (3.3.6)

Therefore ,associated with an arbitrary V, we have a class of equivalent

observers whose associated estimators yield unbiased estimates. Our aim

now is to find the optimum V whi h will result in minimum error covariance.

From (3.3.2) to (3.3.6) we see that the error covariance will propagate

according to the matrix difference equation:
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Z(k+ ) = [_ -V(k+l)C(k !)1J[A(k)Z(k)A'(k)+R'k) [1-V k+l)c(k+l)J'

v_ k D'(kl ; f- , .,..

(3.3.7)

:(0) = [( -v(O)C(O)J] [I -v(OO)C.O)]'-(O)q(O)v'(0)

uhere

1.(k) E{e(k)e'(k)} ; k = 0, 1, .1. (3.3.8)

Defining

A(-3) = I ; a(-1) 0 (3.3.9)

equation (3.3.7) can be wr.r!en

Z(k+1) = [In-V(k+l)C(k+l) ][A(k)_Z(k)A (k)+R(k)] [In- V(k+l)c(k+l)]'

kf - _ -n q -,

+V(k+I)q(k+i)V'(k+l); k = -1, 0, 1,

(3.3.10)

I(-1) = Z

When V ranges over all possible nxm matrices, we generate a solutio.

set "j- of (3.3.10). 'For the optimum estimation, we would like to find a
F1

sequence V which will give rise to the minimal sequence with respect to

the solution set l-i * y comparing (3.3.10) with (2.5.1), we have the

following:

Theorem 3.3.1: A unique minimal sequence { _(k)}0 0 with respect to the
k=0

solution set19- of (3.3.9) exists and is given by

1(k + ) =A (k) - _*(k + l)C(k + 1)A*(k) ; k 0, 1,

Ki (3.3.11)

E (0) E E -(0)[(0) EC(0) Q(0) C(0)z
S-"-o --0--o..

~'i
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where

*(k) Ak)~ ()..'t -) - 0.; kt:O, ., (3.3.12)

and Y--) ,-_ ( (k-i) _ - " (. (k-l)C(k)-(k)I = . (k-!)C'(k)),

k = i, 2,....

If either O(k) 0, k 0, 1, ... , or C(k+l)P(k)C'(k+) 0,

k 0 0, 1, ... (or both), then the u.io,-e Riccati sequence is given by

*(! =* * - (k)
- (1)=".~ (k)-_- (k,)C"'(k+1) [C(k+)__ (k)C' (k+!) 4Q)(k-2) C (k+l)-. (_

(3.3.13)

-Zo)=z c'(o)FCO)_c-(o)+.()J-c(o)Z k0o, ge

i ~where a_"()is given by (3.3.12), and the unique :V k)k 0 which gives

rise to the Riccati minimal sequence is given by

V (k) = A (k - 1)C' (k)[C(k 4(k - 1)C'(k) + q(k) ; k = 0, 1, .... (3.3.14)

The proof of this theorem follows from theorem 2.5.3 directly by

identifying

C(k + 1) - D(k) , R(k) -- 9l(k) =_ 2 (k) (3.3.15)

_(kl --* P (k,-l;Z) , Q(k) -, R(k) . (3.3.16)

Theorem 3.3.1 implies that an optimum class of observers is specified by

_ :k
any sequence {V (k)}k 0 where V (k) e dk l(Z (k - 1)) inductively,

k = 0, 1, ... with E (k) given by (3.3.11), and (3.3.12), k = -1, 0, 1,....

In the special case when Q(k) > 0, or C(k + l)R(k)C'(k + 1) > 0, k = 0, 1,

then there is a unique class of optimum observers specified by {V*(k)}kO

given by (3.3.11). In fact, one can show that an observer with an initial

Ht
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condition z(O) = T(O x is in some sense equivalent to the concept of un-

biased linear estimator (see Section 3.7), and thus an optimum class of

observers is also an optimum class of linear unbiased estimators. In the

rest of this section, we shall show chat when u(k) is known, the estimator

generated via an observer G T e and its associated estimator T

is the conditional mean of x(k). This reflects the truly optimum nature

of the optimum classes of obseLvers.

Since u(k), k = 0, 1, ..., are known a priori, we may assume them Z.

be zero without loosing generality. Now consider 92 with control sequence

equal to zero. By the Gaussian assumption, the conditional expe&:tation of

x(k), denoted by

_(klk) = E{x(k)IF(k)) ; F(k) = F(X(i), i 0, 1, ... , k) (3.3.17)

equals almost surely to some linear functional of {y(O), .. ,y(k).

Lemma 3.3.2: (Weiner-Hopf Equation) Let {w(k)}k=0 be a sequence of random

vectors such that w(k) is a linear functional of y(0), ... , y(k). If in

addition, w(k) satisfies for k 0, 1,

; E[w(k)y'(i)] = E[x(k)y'(i)] i 0, 1, ... , k (3.3.18)

then w(k) = x(klk) a.s. for all k.

The proof is given in the Appendix B. An immediate consequence of this

lemma is the Projection Theorem.

TThe superscript is used to indicate that the stochastic system 32is being

considered. 2
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Theorem 3.3.3: (Projection . , -: be a sequence of random

vectors such that w(k) is a "-r . of {y(O): ... , _(k)). Let

e(k) 4 w(k) -x(k), k = 0, 1. if _e(k) satisfies, for all k,

E[_e(k)'(i)I; i = 0, 1, ... , k (3.3.19)

then w(k) = i(k:k) almost surely for all k. [We shall refer to Equation

(3.3.19) as the Projection equation.]

For any fixed saquence V = {(k),0 the output of the estimator

eT' T j,,, at time k is clearly a linear functional of [y( 0), ..., 1(k)'.

In the follbvrng, we shall prove that

E (k ( 0 ; i = 0, 1, ... , k (3.3.20)

where W (k) the error of estimates if we adopt e-, T E T-,, as an estimating
xT

device, and 6 (k) is given by (see 3.3.5)

S(k+l) = (I - (k+l)C(k+l)][A(k)A* (k) -.J(k)] + _ (k+l)n(k+l)

(3.3.21)

a (0) = [ - V*(0)C(0)](x - x(0)) + V (0)n(0)

* **

and V (k) e Iskl(_Z (k - 1)) inductively, k = 0, 1, ..., with 2(k) given by

(3.3.11), (3.3.12). Let us first establish a lemma and a corollary which

will be useful in later discussions.

Lemma 3.3.4: Let {&(k)}kO be a sequence of random vectors satisfying

(3.3.20). Let {x(k)}k0 be given by (3.3.1) with u(k) = 0, k = 0, 1,

then for all k = 0, 1,

E{e-(k)x'(k)) - E (k) (3.3.22)

- where Z (k) is given by (3.3.11), (3.3 12).
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Proof: lie shall use induction on k. For k = 0, using (3.3.21), (3.3.1),

(3.3.11) and the given statistical law:

F * (0)x'(0)] (1 - V (0)C(0))(1 x{ -E [x(O)_x' (0)]

(3.3.23)

=-z + v (O)C(o)Z =- Z (0)

Assume that (3.3.22) is true for k = 0, 1, ..., ii. Using (3.3.21), (3.3.1),

(3.3.11), (3.3.12) and the given statistical law, we have:

E[& (n+!)x'(n+l)] = [In -V (n+l)C(n+l)][A(n)E{A_ (n)xW(n)}A'(n)-R(n)]

(3.3.24)

= -[A *(n)-V (n+1)C(n+l)A (n)] =-_ (n+l)

The lemma is proved by induction.

Corollary 3.3.5: Let {&(k)}ko be a sequence of random vectors satisfying

(3.3.21) where V (k) e V k-l(F (k - 1)) with Z (k -i) given by (3.3.11) and

(3.3.12). Let {y (k)}k 0 be given by (3.3.1) with u(k) = 0, k = 0, 1,....

Then for all k = 0, 1,

E{*(k) '(k)i = 0 (3.3.25)

Proof: We shall use induction on k. For k = 0, since using (3.3.21),

(3.3.1), (3.3.22) and the given statistical law, we have

(O)y'(0)= E{A (O)x'(O)}C'(O)+E{. (O)n'(O)}

(3.3.26)

-. C' (0)+ (O)C(O)_o C'(0)- (0)Q(O) 0

Assume that (3.3.25) is true for k = 0, :1, ... , n. Since V (n+l) e (Z (n)),

using lemma 3.3.4, (3.3.11) and (3.3.1), we have
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E'-& (n+])y'(n+l) l  Et (n+6 ""(n+l) C'(n+1)+E{ *(n+l),'(n+1)}

= -_ (n+l).' (n+J)+Cr.+l)Q(n+l)

= -~(n+1" (n+)+ A (u+l)C' (n+l)-V (n+l)C(n+l)_ (n)C' (n+l)

-f (n+l)C.'(n+I)+Z (n+l)C' (n+l) = 0 (3.3.27)

the corollary is proved by induction.

We are now in a position to prove (3.3.20). The results are stated as

a theorem.

Theorem 3.3.6: Let ta (k)}k be given by (3.3.21), where (k) e Vk .(Z(k-l))-- k=u' kbe Iie y(..1 hr

with 7 (k-l) given by (3.3.11) aiW (3.3.12). Let fv'(k)}k= be given by

(3.3.1) with u(k) = 0, k = 0, 1, .... Then for all k = 0, 1, ... , _ (k)

satisfies the projection equation; i.e.,

E{ie*(k)y'(i)} = 0 i = 0, 1, ..., k (3.3.28)

Proof: We shall use induction on k. By Corollary 3.3.5, (3.3.27) is true

when k = 0.

Assume that (3.3.27) is true when k = 0, 1, ..., n. For i 0, 1,..., n,

we have from (3.3.21) and the induction hypothesis that

E{. (n+l)y'(i)} = (I - V (n+l)C(n-;l)A(n)E{e (n)y'(i)} = 0 (3.3.29)

..or i = n + 1, Corollary 3.3.7 gives

E{_*(n + l)y'(n + )} = 0 (3.3.30)

Combining (3.3.29) and (3.3.30), we have that (3.3.28) is true ;and the

theorem is proved by induction.
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In view of the Projection Theorem, this means that the estimate w (k)
2

generated via eT' T e g , is the a.s. conditional mean of ik),k-O,.......

The results -are also true when u(k), k = 0, 1, ... , is a nonzero but known

control sequence, for one cart always subtract off the deterministic contri-

bution due to the nonzero known control seq:ence. The general situation

where the u(k), k = 0, 1, ..., are generated by feedback of the observation

sequence, shall be considered iL detail in Chapter 5.

From che above discussions, we note that in the general caae, ti'ere is

more than one optimum classes of observers which will yield the same per-

formance; only in the sp .cial case when Q(k) > 0 or C(k+.L)!L(k)C' (k+l) > 0,

k = 0, 1, ... (or both), there exists a unique ontimum class of observers.

3.4 Minimal Order Optimum Observers for Stochastic Sy:.tems

Let V (k) -~k1 (Z (k - 1)), k = 0, 1, 2, ..., specify an opzimum

class of observers. The class of minimum order oplimum observers associated

with (k)r is
k=0  xP, where p is the minimal order (or dimension). To

find the number p amounts to finding the rank of the matrix [I - V(k)C(k)].

We shall see that, depending on the observation noise ,e have that the

minimal order optimum observers will have order which ranges from n - m to n.

Let us assume that the observations are partly deterministic, i.e.,

y(k) ~ . J .. x(k) +(3.4.1)

[y 2 (k)j C (k)]0

where Yl(k) e R , -2 (k) e R . The vector Y2 (k) i, t'.e noise-free component

(Figure 3.2). This assumption has no loss of generality, for by appropriate

transformation of the observation vector, all problems where the observation
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noise is degenerate can be put into this form. We shall assume that

has covariance matrix Q(k).

(k) > 0 (k) M . (3.4.2)
0

--2 2

Definition 3.4.1: A system with output w(k) is cal1ed compatible with

res.t to the noise-free observation j2 if for k = 0, ,...

g(k)w(k) Z2 Ck. )= 2(k) a.s. (3.4.3)

We shall also say that an observer 0T' T c jV, is compatible with re-

spect to i2if ics asseciated estimator e., T c JV' is compatible with respect

to T

Theorem 3.4.2: Let _ (k) c Ifkl(Z (k - 1)), with E (k .- 1) given by (3.3.11)

and (3.3.12); any GT' T e Jc,* is compatible with respect to the noise-free

observation Y2"

Proof: Using Corollary 3.3.5, we have

V (k)()(k) Z _ k) k = 0, 1, ... (3.4.4)

Partition the matrix V (k) into

V (k[) ( " V2 (k) ; (k ) n , V (k) M

k = 0, 1, ... (3.4.5)
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Equation (3.4.4) implies

(k)( W Z .) k-O,l,... (3.4.6)

o , 7 ( k , . -. k 0 , 1 , . .( 3 . 4 . )

where Z (k) satisfies (3.3.11) and (3.3.12). The theorem follows from

(3.4.7).

Tn the following, we shall consider the special case where the sequence

of matricei R(k)}k are all positive definite. The general case can be-k=O
traated in a similar apprcach. Since by assumption R(k) > 0, k = 0, 1, .

Z (k) is given by equation (3.3.13), and V (k) given by (3.3.14) specifies

the unicue optimum class of observers.

emna 3.4.2: Let (k) 0 , k = 0, 1, ..... If the noise-fre- observation

v.,(k) R, k= 0, 1, . .-. nea - (k) given by (3.3.13) is of rank n -

k = 0, 1,....

Proof: By compatibility (3.4.7) we have

rank 7 (k) _ n - m2  k = 0, 1, ... . (3.4.8)

From (3.4.6) and (3.3.14), we deduce that

_Cl ( k ) __-  ( k = Q l (k ) V l ' (k )

= -l(k).'. (k)Cl(k)[_ (k-l)-;. (k-l)C'(k)

* -i

(C2(k)-,' (k-l)C(k)) C2 (k)A (k-l)] (3.4.9)

In
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where

A (k) ={q (k)+C-- 1 (k)(- (k-l)C(k)

(C2(k)4*(k-l)c,(k))-Ic2(i)__(k-I)]C'(k)- > 0

k =0, , ... (3.4.10)

(In deriving (3.4.9) from (3.3.14), a fai.r amount of matrix algebra is

needed.) Let us define the matrix r (k - 1) by

.5 (k-l)=A_ kC(k) (Cq) (kl)C(k))-C 2 (k)L*(k-l)

k =0,1,... (3.4.11)

Now equation (3.4.9) can be written as

C(k)Z (k) = _q(k)A (;l(kl[A (k-l)-2"(k.-1) ; k 0, 1, .... (3.4.12)

We note from (3.4.11) that if a vector v E N(r (k - 1)) then it must be true

that A (k - 1)v e N(C (k)). Now suppose that the same vector v E N(Z (Q);

then, from (3.4.9), we conclude that

Ql(k)j% (k)_Cl(k)A (k-l)v =0 =A (k-l)v E N(C_(k))

k = 0, 1, ... . (3.4.13)

Therefore,

A (k- 1)v £ N(C(k)) ; k = 0, 1, ... (3.4.14)

But from (3.3.11), we have

0 = A (k - 1)v ; k = 0, 1, ... (3.4.15)
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Since- "(k- 1) 0 vk,';eir.- e v 0. Thus,

N(_ (k - 1)) n NC- (k)) = {0 k - 0, 1, ... (3.4.16)

Clearly, the rank of r (k - 1) is m2, and so N(_P (k - 1)) has dimension

n n- m. (3.4.16) implies that

rank (.7 (k)) : n - m9  k = 0, 1, .... (3.4.17)

Equations 1,3.4.8) and (3.4.17) imply that rank _(k) n -m2.

Theorem 3.4.3: Let R(k) >0, k 0, 1, .... 1.f the noise-free observation
mI9

:,7(k) e R -, k = 0, 1, ... , then the class of minin.al order observers i3

of order n - 2 .

Proof: From the remark made at the beginning of this section, one needs

only to prove that the matrix [i - V (k)C(k)] has rank n - m2, k = 0, 1,

(3.3.13) and (3.3.14) give us

[I -V (k)C(k)]_ (k - 1) = ! (k) , k = 1, ... (3.4.18)
-n

By assumption, R(k) • 0, k = 0, 1, ... ; thus i. (k) has full rank for all k.

By lemma 3.4.2, Z (k) has rank n - m 2 , k = 0, 1, ... ; therefore,

[I - V (k)C(k)] has rank n - m2 .

To end this section, we shall give one explicit minimal order optimum

observer and its associated estimator for each case:

Case 1: m2 = 0

The class of minimal order optimum observer is of order n, and one

explicit optimum estimator of minimal order can be constructed:

6 * * )A(k)wg: wl (k+l) = (I-V (k+l)C(k+l))A _~ (k)+V (k+l)x(k+1)+_B(kl~u(k) (3.4.19)
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where IV (k)}k=0 is given by (3.3.11) to (3.3.13). .We -=ni= trhat s

is the Kalman estimator [39]. (Figure 3.3.)

Case 2: mI = 0

The class of minimal order optimum observer is of orde:7 n - m, i.e.,

there must exist P(k) c mn(nm) and T(k) E M (nm)n, k 0, 1., ... such that

T (k)

[P(k) V (k)] ... = I (3.4.20)

C (k) -

Since T(k) M (n-m)n and C(k) M mn, (3.4.20) also implies that

T(k)V (k) 0 ; T(k)P(k) = I ; C(QP(k) = 0 . (3.4.21)- -- -m (n-rn) - -- -- n m - -" -n (n-rn)

To specify one explicit minimal order optimum observer, let {P (k) 0 be
k=0

any sequence of matrices such that

C(k)P (k) = 0 (nm) k = 0, 1, ... (3.4.22)

Let T (k)=}k be the solution of

T (k)V (k) = 0 (nm)m; T (k)P (k) = I ; k = 0, 3, ... (3.4.23). .n. .m --n-mn

The solution for (3.4.23) exists and is unique because we know a priori that

(3.4.21) must have solutions (nonunique). The choice of fP*(k) 0
- k=0Kis nonunique, and is usually chosen so as to simplify computation.

Note that the condition C(k)V (k) = I is automatically implied by
compatibility. 

m
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Case 3: 0 < m2 < M

The class of minimal order optimum observer is cf order n - m2 , i.e.,

there must exist P(k) c M 2 and T(k) c M (nm2) n k = 0, 1, ... suchthr us xs Pk n(n-xi 2 ) _ n-~

that

* T(k)1
1(k) V (k) ] ... I (3.4.24)

C(k)J

and T(k) is of rank n - i 2 . Choose T(k) such that

rT '(k)

T~k 12(k) M(n-.r (3.4.25)

and

T 2(k)1

is of rank n; thus T (k) must be given by

I [c 1 (k)]

Tl(k) = [K (k) K2 (k)] "'J I K(k)C(k) (3.4.26)

where K1 (k) c Mm , K2 (k) c Mm Partition P(k) into
•Il - 12

P(k) = [P 1 (k) " 2 (k)] ; P1 (k) £ inm , P2 (k) c I M (3.4.27).... -- n(n-m)

Equations (3.4.24) to (3.4.27) imply also that



f
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-12 Qk1
P2 k) . .1 k)K(k) + V (k) (3.4.28)

C  J

Since

T2(k)]

_s M

(3.4.28) also implies

T 9)(k)e 2 (k) = I ; C(k)e 2 (k) = 0_m(n-m)
-n-I ;gkn9k 0mnm

T2(k)PI(k)K(k)+T 2 (K)V (k) = 0 ; C(k)P(k)K(k)+C(k)V (k) = I
... (n-m)m - -n

(3.4.29)

Partition V (k) = [Vl(k) V (Q), Vl(k) EM m I, _V2(k) c Mnm ; compatibility
12 1'- n12

implies:

C2(k)P (k) = 0 C2 (k)Vl(k) = 0 ; C2(k)V*(k) = I (3.4.30)
- 21 -- (_v_( .-'2

Using (3.4.30), the last equation of (3.4.29) can be reduced to:

Cl(k).P(k)K (k) + C (k) V (k) = 0 (3.4.31)
1 Z-1 -211

gl(k)P (k)KI(k) + Cl(k)Vl I . (3.4.32)

Now to specify one explicit minimal order optimum observer let us

* oo
choose {P (k)}k 0 such that

_. = _ " ,]P1 k) P 2 (k) a Mn(nl-m) (..
P (k) [PI(k) P(] ; M (3.4.33)

-E2 .m 21n-
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and P Mk, P Mk satisfy:

Cgook)P(k) 0 f C (k)PEl(k) 0 (3.4.34)

Le t T Mk c MK M %.EC (k) c M be the solution of the
-2' d(n-n) n' S~ m 1 -, 2 M

following:

ql(k)PE1 (k).E2 (k) + q1 (k)V.7I'k) 0

qlik).E(k)K1 (k) + C1 (k)V 1 (k) =I

T2 (k)P 1 (k)K i(k) + 1 2 (k)V 1l(k) 0-(n-m)m 1  k =0, 1, 2, .. (3.4.35)

T2(k)P1l(k)LK9 (k) -(n-in)
.1k 2 Y2(k) =QP.Mm2

T(k)P M)= I
-2 -n-rn

Solution for (3.4.35) exists and is uniquessince we know a priori that

there are solutions for (3.4.29). The choice of {P *(k)} cc is nonunique,

and is usually chosen so as to simplify computation. One minimal order

optimum estimator is 9 where

T (k) ... ~~ck) (3.4.36)

and K (k),j 2 (k) are given by the solution of (3.4.35). (Figure 3.4.)

3.5 Detectability and Observability of Linear Systems

Let us consider the totally noise free situation, i.e., R(k)=

-Q(k) = 0, k = 0, 1,....We shall discuss the notion of detectability and

observability of the deterministic system S in terms of its structural

Ii properties. -
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Definition 3.5.1: The system S is said to be detectable at Ir if for
1 0

x(ko ) c Rn arbitrary, there exists an estimator 1 described by

z(j+l) = T(j+i)A(j)Pe(j)z(j )+T(i+l)A(j)V(j)y(j)+T(j+l) B (j)u(j)

e T (3.5.1)T

w(j) = P(j)z(j)+V:(J~y(j) ;z(k o ) e Sit = {T(ko)ej e t Rn }

such that w(j) -- x(j) as j + =. The system is said to be detectable

if it is detectable at all k =.., -1, 0, 1,....
Lo

Definition 3.5.2: The system gl is said to be completely observable ac k

of index v if for x(k) e Rn arbitrary, we can deduce x(k) by observing

_(k), y(k + 1), ... , y(k + v-1).

One can easily show that an equivalent definition of observability

i s: [421

Definition 3.5.2': The system 8 is said to be completely observable at

k of index v if there exists v <o such that

ko, v = [C'(k ): -A(ko,k)C'(ko+1): ... :'(k +v-2,k )C' (k +v-1)] (3.5.2)

has rank n, where

4(i,j ) =A A(i)A(i-l)... A(j) ; IA(i,i+l) I I ; i a j > k (3.5.3)

The system 3l is said to be completely observable if it is completely ob-

servable at all k with index v k = ... , -1, 0, 1,....
o ko

From the above definition, we cannot conclude a priori any relation

between detectability and observability of the linear system. Intuitively,

we may think complete observability implies detectability but at first sight,

this implication is not obvious. In this section, we shall investigate the

relation between observability and detectability.



Wi-=-ut of i--e a= set k = 0, anI for si=plicity write

"e stall az-ss =a" -: A:(k) is in.e.--. for all k = ... 0 1 _ , 1Le
.-! ) ...1); (,_iI ~U --- n1 .(35-_ (1,3j= _ -,) = A _~~A~~- -

If %re asste e a ziriorl dis.ributic- am the ihitial coaid-lon of X(0),

hen z re ca= a.-e u-e of the resukti in Sacticn 3.3 to ebtain the equation

for :7n e error caarlance, tinis is given by [see (3-3.11), (3.3.12))

- 1! k ( ! C z -() k , , . .

_ _ ;o)(c~o:l(3.5.6)

(0) _c()(():

where

SAk) k (3.5.7)

(k) ~ _ (.1.-_)) = .. ;r (C(k)- (k-l)C'(k) = (k-)C'(k)

k = 0, 1, ....

Theoze= 3.3.3: Let "[- (k).' be a sequence satisfying (3.5.6) and (3.5.7)-- O

;ith V (k) (k - 1)). If Z 0 (but arbitrary), then the null
soace of _ (k) equals to the range space of 2_ (0,k - 1)_ , k 0, 1,

Proof: Ve shall use induction on k. For k = 0, we have from (3.5.6)

(0)Ro = 0)C = c'(0) - Z C'(0) = 0 (3.5.8)~0
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Thus we conclude that

N(- (0)) D R(o) ; dim N(E (0)) > dim R(9) = m (3.5.9)

where R a(-) denotes the range space. By assumption, Z > 0, thus from

(3.5.6) we have

.1. -1
( (o))r) N(E C'(0)(C(O),r, C(0)) C(0)1) = {o1 (3.5.10)

C(O) is of range r-, therefore (3.5.10) implies

m > dim N(Z (0)) (3.5.11)

Equation (3.5.9) and (3.5.11) imply that

N(. (0)) = R() = R(OA(0,-I)_o) (3.5.12)

Let us assume that for k = i, we have

N, (i)) R ( - 1)) (3.5.13)

From (3.5.4) and (3.5.5)

(A M (0i = 'A(0,i) 0 . (3.5.14)

Let v -A R 0(,i) ), then there exists some x e Rn such that

a-A-
v = _A(0, i)glx = (A- Mi)' (0,1i - l)R_ (.515

and so A'(i)v e R ( '(0,i - 1)_.), and, by the induction hypothesis, we also
a --A I

have A',i)v e N(Z i)) or v E N(A (i)). By (3.5.6), we conclude v c N(Z (i + 1)).

Also, by compatibility, the null space of E (i + 1) includes the range space

of C'(i + 1). Combining the two, we have

Ii
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N(_ (i + 1)) .3 R a (0,i)+) (3.5.16)

We also have rh inequality

dim N(E i + 1)) - dir Ra ('(0, )Qi+ (3.5.17)

Let S. = {v e Rn~v e R (L*(i)) ,NN(C(i + 1)A(i))}. Since Rn is finite
1 - a

dimensional, from the induction hypothesis (3.5.13), we have

a(-_, (i)) = x(. - 1)). Therefore any v c S. is described by

g(i+l)A(i)v = 0 : 0,! ,(o,i-l'v = 0_ =*-O +,kA(0, I)(i~ = 0_- (3.5.l1

Since by assumption A(i) is nonsingular, equation (3.5.18) implies that

dim Si dim N(0' P "' =-) n - dim R((0,)2.+I ) (3.5.19)N'.A( 0,) a dim -
i*

Let SI be the image of S. through the transformation Z (i)A'(i); i.e.,
1 1 --

S.1 {w U Rnl-* "( -1
. -Z A(i)w v; v S. Let S. be the subspace which is

eaual to S. modulo the null space of E (i)A'(i). S. has the same dimension

as Si, and so

dim S. n- dimRe (A(0,1)i+l) (3.5.20)
i a

Now let w e S. , w# 0; then from the definition of S. and S. , we have- 1 1 1

C(i + 1)A (i)w= ; A (i)W 0 0 (3.5.21)

From (3.5.6), we conclude

z (i + 1)w = A i)w # 0 (3.5.22)
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* -1
Therefore, the null space of X (i + 1) and the space S. have only the zero

element in common; thus

-A-1
dim N(E (i + )) n - dim S. dim Ra($2(O-- i)O+i . (3.5.23)

Equations (3.5.16), (3.5.17), and (3.5.23) imply

N(Z (i + 1)) R ( (Oi)_  _) (3.5.24)

The theorem follows from induction.

A direct consequence of the above theorem is the following result

Theorem 3.5.4: Let g be completely observable at time k of index %.k; then

there exists an optimum observer 0', T e JV' which will reconstruct the

exact state, x(j), in at most vk steps (i.e., at time k E j f k + vk).

Thus if 31 is completely observable at time k of index Vk, then I is de-

tectable at time k; if S is completely observable, then S is detectable.
1 1

Theorem 3.5.4 generalizes Kalman's results [41] in deadbeat estimatoiS;

for this reason, we may refer to sL.n an optimum observer , T £ c, as a

deadbeat observer. Clearly there is more than one class of deadbeat ob-

parameterized by {(}k=0' 1(k) e 1k-l (E (k - i), k = 1, 2,....

Among these, we shall find the simplest deadbeat observer.

Theorem 3.5.5: Let a, be completely observable; the class of minimal order

ieadbeat observers is of order n-m.

Proof: Clearly, the class of minimal order deadbeat observer must be of

order greater than or equal to n - m. To prove the theorem, we need to

find a sequence {Vl(k)}k=, Vl(k) VW i (E (k - i)), k = 1, ... such that

the matrix (I - 1(k)C(k)) has rank less than or equal to n - m for allH k = , 2,....

it L
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Construct

V"* A (k-I)C'(k)(C(k)A (k-l)C' (k)) + C(k)(C(k)C'(k))

(3.5.25)

fI - C(k)Ak)-_ (k-lik')(k(k# k = 1, 2,

where M denotes the pseudoinverse of a matrix M. Using the properties of

pseudoinverse (see Appendix A) we have

_(k).C(k)A (k-l)C'(k) = AX(k-l)C'(k)(C(k)A*(k-l)C'(k)) C(k)A (k-I)C'(k)

= V (k) (C(k)A (k-l)C' (k)) (C(k)_A (k-)C' (k)) C(k)A (k-l)C' (k)

= V (k)C(k)A (k-i)C'(k) = A (k-i)C'(k); k = 1, 2, ...

(3.5.26)

Therefore Vr(k) E 11k-(Z (k - i)), k= 1, 2,.... From (3.5.25), we deduce

C(k)(I - V_(k)C(k) = C(k) - C(k) = 0 (3.5.27)

Since C(k) is of rank m, (3.5.27) implies that

rank (I - V (k)Ck)) n -- m (3.5.28)
-n -1l

and the theorem follows.

Finally, we would like to derive a test for the detectability of linear

systems. Using (3.3.7), we have easily the following:

Theorem 3.5.6: A system l is detectable if and only if there exists a

uniformly bounded sequence {V(k)}k=O such that

-a 2 Ji-j I
II. (i,j)j - a1 e a 1,"2 > 0 (3.5.29)

v
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where for i j:

e(V(k+l)) A A(k) - V(k+l)C(k+l)A(k) ; A (i,j, = ,e.(V(i+l)) _(V(i))
v

.. .(V(j+I)) (3.5.30)-3-

3.6 Asymptotic Behavior of Optimum Ez-imators

In this section, we shall investigate the asymptotic behavior of an

optimum estimator F2 T E: for the stochastic system 3 . We shall say

that the system S2 is detectable if its deterministic correspondence, l

is detectable. The investigation is carried out by considering the minimal

Riccati sequence {E_ (Q)}k=0 which describes the evolution of the minimum

error covariance.

First, let us assume that the initial time is ko, and consider the

behavior of E (k), as k - o, where Z (k) satisfies

E (k+l) A _ (k) -V(k+l)C(k+l)A (k)

(3.6.1)
E (ko= Z - E C' (ko)[C (ko) EC' (k o + _Q(ko  _°

0- -0 "-- 0 -- 00 _

~o 0

andV (k) e V k l ( E (k - 1)), k k ko + 1, ko0 + 2, ..

___eorem 3.61: The minimum covariance errorem (k), eill remain bounded

for all k = ko0 + 1, ko0 + 2, ... if and only if the system 9 2 is detectable.

Proof: If 3 2 is detectable, then from theorem 3.5.6, we note that there

must exist a uniformly bounded sequence {V(k)} k= such that the resulting

solution of (3.3.7) (with k replacing 0) will remain bounded for all
0

k = k , k + 1, .... Since {E*(k))kO satisfying (3.6.1) is the minimal

sequence with respect to the solution set of (3.3.7) we conclude that

M (k) must also be b3unded for all k = k, k + 1,....
j I



-78-

Conversely, if f (k) remains bounded for all k = k, ko + 1, ... then

from (3.3.7), we have

11% (i,j) ae-ali-ji ala , > 0 (3.6.2)
V* I

and so S. is detectable.

Next, we shall assume that the present tire is k, and assu=e that the

initial time k
0

Let us rewrite (3.3.9) in a more suggestive form: (see k' A - 1)o 0

r(k-+l,k' ;l (a(k)-j(k+l)C(k+l)A(k))-_ vLk+I,ko;:o) (A(k)-V(k+l)C(k+l))
-v 0 --o - .0 -

+(I -V(k+l)C(k+l))R(k) (I -V(kl)c(k+l) '+V(k+)q(k+l)v (k+l); =,

(k;,k;;- = (3.6.3)

As we have noted, (3.6.3) is the same as (2.5.1) except for scme changes in

the symbol (3.3.14), (3.3.15). We shall still use the symbol as defined

by (2.5.2) with the obvious change (3.3.14). As usual, we shall denote the

minimal Riccati sequence with respect to the sniution set of (3.6.3) by

;Z(k_ ko 7Z)=

- 0 _kk

Lemma 3.6.2: There exists an unique bounded sequence {Z (k;0)1k=- such

that

lim Z (k,ko;O) = Z (k;O) for all k (3.6.4)
Ic' -,-w a

and _ (k;O) satisfies

S)(k+l;-O) 0 (k+l),z (k;)))) (3.65)

if and only if the system- 2 is detectable.
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Proof: Let us denote

0 (V) A A(k) - V C(k+l)A(k) ; k = k', k' + 1, ... (3.6.6)

Using lemma 2.5.2 and Equation (3.6.3), we have the inequality

k_,(X (k,ko-;0))E (k-lko10-_(-~oO)l:l_ (k,ko-;)

_S Z (k,k'-l,O)-Z (k,ko;O) . (3.6.7)
00

Since Z (ko,k'-l;R) _> 0 and . (k',k';O) = 0, (3.6.7) implies that
0 0 0

Z (k,k -l;O) Z E (k,k ;O) for all k k 0 (3.6.8)
.. .. 0

If g is detectable, then by using theorem 3.6.1, Z (k,k ;0) will be
2 a

bounded for a fixed k and all k 0: k. By the monotone convergence theorem

of nonnegative operators [32], we conclude that there exists an unique

E (k;O) such that

lim E (k,k E (k;) E (k,ko;O) ; k > - (3.6.9)

0

Let us define

_ (k+l;O) = _k(V (k+l),_ (k;_O) ; V (k+1) e 1 k( - (k;O)) (3.6.101

By lemma 2.5.2 and (3.6.8) we have for all k' > -w:
0

E (k+;O)- (k+1;0) < Vk(V (k+ll,_X (k;,Ol-4(V (k+l,ko;OQ),E (k,Io;O))

-k(V (k+l,k;O),I (k;O))-2k(V (k+lk';O),Z (k,k';O)) (3.6.11)
0 0

V(k,k'-i;O) c l. K1(E (k-1,k'-i;0Q)) , i =0, 1
0 0 -
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Since - (k,k';O) (k;O) as k' - -, (3.6.11) implies
0~~ 0

1;* Z (k+l; (3.6.12)

From (k.5.12) (3.6.9) and lemma 2.5.2, we have for all k':
0

_ (k+l;0)>i (17 (k+l),E (k,k';O)"h!', (V (k+lk-;*),= (kk';O)) *(k+lk';Q)

(3.6.13)
and so taking k' - -

.._ (k+1;O) > 
_ (k+l;) . (3.6.14)

Combining (3.6.12) and (3.6.14) we obtain (3.6.5).

Conversely if (3.6.4) and (3.6.5) are true, then it mus, be true that

-2i-i I
J% ev,(i,j)[ I 1 e al,a 2 > 0 (3.6.15)

and so g2 is detectablc by theorem 3.5.6.
2

Theorem 3.6.3: There exists a unique sequence (E (k)}O such that

lim E (k,k ;) = __E (k) for all k (3.6.16)

0

-oowith - >0; and Z Wk satisfies

Z A (k+l) 40((k+l)4 (k) = (k)-V (k+l)C(k+l)6*(k) ; V (k+l) cs (_(k))

if and only if the system S2 is detectable.

Proof: Using lemma 2.5.2, we have

5k(V(k,ko;Zo) (Z*(k k'; ;_)-E*(k,ko;.)e( ~* k; )E klk~

-k(- 0 a -:k 0- o-0 o-0

i _f * (k+l, ko ;O2)-<_ (V" (k, ko;0) )(E *(k, ko ;E )-E* (k,ko ;0))O (V* (k, k';0) ) .

k o 0 0 - k - 0k a

(3.6.18)

LI .. . .



Since E (k',k';E) = Z -> 0, then (3.6.18) implies that
0 a-0 -

0 S £ (k+l k';.) - E (k+l,ko;0) < (k,k')Z !(k,k')

where

_o~~k~kC) (kOk( (kkk;O) ~

__(k , k)) .((*(kk;-))_ ( ,k;O)...2,(_(k',ko;O) . (3.6.20)
-- 0 0 _ -k l-o

If the system S is detectable, then by theorem 3.6.1, we must :*ave
2

-a2 ik-k1ll]_±0(k,ko)j :S < ale Cl a 2 > G (3.6.21)

and so using lemma 3.6.2 and equations (3.6.19), (3.6.21), we have

lim E (k,k';1_) = lr E (k,k';O) = .(k;O) = L (k) . (3.6.22)
k'-- k' -),o

0 0

Equation (3.6.17) follows from (3.6.5).

The proof in the reverse direction is the same as in proving lemma

3,6.2.

Finally, we shall consider the time invariant case where A, C, Q, R

are constant a-d. bounded matrices. In this case

* (k,k';E ) = _ (k-k',0;Eo ) (3.6.23)
0 o-

thus taking k' = 0 is th . same as considering k 4 =. We shall only con-
0

sider k' = 0, and k -'
0

Theorem 3.6.4: There exists a bounded Z such that

lim (k,0;E) =Z (3.6.24)
k-o

Lnd E satisfies the algebraic equation

1j

I
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_ =A - v c ; V A E\,{v E iv(c Aq +_)Ac',

(3.6.25)

A = A EA' + (3.6.26)

if and only if the system S2 is detectable.

Proof: In the time invariant case

_ )= l(V,E.) A .,E) ; k(V) = k+(V) A .(V) (3.6.27)

Using lemma 2.5.2, we have

Z (k+l,0;0) - _ (k,0;0) > 0(V*(k,O;O))(Z*(k,O;O) -- (k-l,0;0))

'(V (k,O;0)) • (3.6.28)

Since Z (1,0;Q) 2_ 0, (3.6.28) implies that

(k+l,0;O) a Z (k,O;_0) k = 0, 1, 2, ... (3.6.29)

By theorem 3.6.1, Z (k,0;O) will remain bounded if and only if S., de-

tectable, and s3 by (3.6.29), one concludes that there exists Z sich that

lim Z (k,O;_O) = Z . (3.6.30)
k-*

Using (3.6.23) and lemma 3.6.2, S sstisfies the algebraic equation

E. tb(V,_) A V C( ) (3.6.31)

and ._ is given by (3.6.26) if and only ifS 2 is detectable. Using theorem

3.6.3 we have the desired results.

Theorem 3.6.5: If 92 is detectable, there exists only one nonengative

definite matrix Z which satisfies (3.6.25), (3.6.26).
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Proof: Let us define

E= 0 ; V € V(0) (3.6.32)

and

i - i i-I Vi

A (V ,_ ) ; C 1s( 9) . (3.6.33)

By (3.6.30), such a constructed sequence of E will converge to Z , which

satisfies (3.6.25), (3.6.26).

Let - -0, and E satisfies (3.6.25), (3.6.26); i.e.,

_ = (_,Z) ; V E IS(Z) (3.6.24)

By lem-ma 2.5.2, we have

i-iii~ __i

_ V) - zl)-- (V) z - Z- _(V)(_ -_.-l)e' (V) (3.6.35)

By construction, Z = 0, thus

_0- Zi - i (iO) (3.6.36)

where

m(iO) _ o(vi)o(v i - ) ... e(Jo ) (3.6.37)

If 2 is detectable, then
2

-a2 i-jI
(i,j) ale a1, a2 > 0 (3.6.38)

thus we have

_ - i as i - (3.6.39)

and uniqueness follows.



3.7 Ce=era1 Disc, s-.en

In this chapter, %z have ebained an opti=u= xmbiased esti=aror for

* .e s:ochastic svste= .. he:e the observation ialse =av be dcgenerate

(Olk) Z 0) or singul-r Ctk) 0). in essence, the onti~i= esti=ator is

specified by the relations:

. (k-l-) =-T(k+!}Alk)Pr.Iz k--I--XA) (g()T_.kl.ku_)

- (3.7.1)

,'I) = P~k)z (k)-V (k)vy(k) ; z(O) = T(O)x

-:,e (k) is the opin-l ez-i=ares of x(k). (See Figire 3.4.) The atrices

1".k), T (k) sztisf;"

P(k)T(k) + i (k)C(') = 1 (3.7.2)

and V (k) is given by (see theoren 3.3.1)

-* * -* -L

V ('<) _ (k-)) k 2 , . - " (0) = c'0)[c(0):C'(0)-R(0)]

(k+1) L _ -)- ('k+D)C(k+)L W

o(0) = -: c'(o)'tc(0):- c'(o)Z(o) 1-c(0):_ 3

W- k AWk)- (k)Ak(k)+R(k)

Note that ;V (k)k,= can be precompured when the structure of -2 nnd the
z~=O

sta.-stical law of the uncertainties are known. In general, :V (k):
- k=O

may not be unique. In the special case when q(k) > 0 or C(k+l)R(k)C'(k+) 0

we have uniqueness in (t (k)} (see theorem 3.3.1).

Once V :(k): k= is found, we can choose different T 'k)' and

:T(k): 0 sich that (3.7.2) is satisfied, and so one can construct different
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optimm estizators P h unere the dimension of the observer state vector

z((k) are different depending on the choice of {T(k)},_0, T(k) (

It has been shown that in the special case vhen R(k) - 0, the minimal

order optimtu observer is of dicension n - m2 where m2 is the number of

noise-free channels available. Though the proof is given for the special

case, it is cenjectured that the results will be true in the general cose

Vnen R(k) 0 0 or even R(k) = 0.

Finally, the asymptotic behavior or £ (k) given by (3.7.3) was con-

sidered in great detail. Necessary and sufficient condition were derived

for W (k) to be uniformly bounded and existence of its steady behavior.

In the following, we shall discuss some of the relevant points in the

development of this chapter.

(A) Discussion of Approaches

Different approaches are available to filtering problems. The

Projection approach was used by Kaiman to first obtain the Kalman filter.

The starting point of this approach is the Projection Theorem (Theorem

3.3.2). There is also the Baysian approach [43] where one computes the

conditional expectation of the state, x(k). Also, a max-likelihood

approach [44] is available to filtering problems. Then, there is the

approach of unbiased minimum error covariance estimates [10], and of

weighted least square estimates [43]. In the linear-Gaussian case all

thest approaches will yield the same solution (see also section 3.3). It

is hard to argue which of the above approachs to the problem is more funda-

mental than the other, for this highly depends on one's philosophical

viewpoint to the problem. One may argue that the Baysian approach is the

most fundamental approach. This is true to the extent where one can justify
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the knowledge on a priori distribution of all the underlying random

vectors.

The approach used in this chapter seems to be a new anproach to

the problem where one starts from deterministic consideration This is

true in some sense. If the kncwledge on the a priori distribution of the

state x(O) is correct, then the approach is equivalent to that of unbiasei

minimum error covariance. To verify this statement let us consider the

stochastic system -3 (with u(k) - 0). We look for an unbiased estimator

which is nonanticipative. In general, such n estimator is described by ['5j:

z(k+l) = F(k)z(k) + G(k)y(k) Z(k) R'

e: (3.7.4)

w(.%) = P(k)z(k) + V(k)v(k)

The initial condition of z(O) is some linear transformation of x ; i.e.,

z(O) = T(0)x (3.7.5)m - -o

and for all k - 0, we want E{w(k)} = E{x(k)}. With this restriction we

have

(P(0)T(0) + V(O)C(O)x = x . (3.7.6)

We would like to construct the estimator completely independent of the

mean of x(0), then (3.7.6) implies

P(O)T(0) + V(0)C('0 = I (3.7.7)

and so we must have s 4 n - m and T(O) e f2(C(O);m,s,n). For k > 0, the

unbiased restriction gives
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k-i

P(k)[ f~-l,O)T(O)x + ,Y(k-l,i+1)G(i1C(i):A i-1, 0)xI

i=Q

+ V(k)C(k)oA(k-i,0)x = s (k-l,0)x (3.7.8)
--A o -A-o

If AMk are invertible for all k, and the structure of the estimator is

independent of x,0 then (3.7.8) implies that

k-i

+ V(k)C(k) =I n (3. 7.9)

Define

k-i

T Z)=~-i,)TO EOkl -=S F F(k-l~i+i)G(i)C(i): (i,k-l) .(3.7.10)

i=O

Then T(k) 2-(C(k);ni,s,n) and T(k) satisfies:

-1 -1
.T(k + 1) F.(k)T(k)A (k) + Dfk)C(k)A (k) .(3.7.11)

Such an estimator can be realized by picking

F(k) = T(k +l)A(k)P(k) R (k) = T(k + l)A(k)V(k) .(3.7.12)

Comparing with theorem 3.2.3, we see that all unbiased, nonanticipative

2estimators can be realized by an observer (9r T e;YV and its associated

2estimator e T .Therefore,the restriction of using an observer and its

associated estimator as an estimating device is the same as restricting

ones attention to bnly unbiased state estimators.

But if the a priori assumption on x is different from the true mean
-0

of X(O), then it is not unbiased minimum mean square error approach. In
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tact in this situation, nearly all the approaches mentioned above may not

be justified. But we shall see in discussions that under some mild

conditions our approach is still valid even with incorrect

on a priori distribution on the initial state x(O).

(B) Dimension of Observers

From the point of memory storage, we would like to find the minimal

order optimum observer; but from the point of view of computation, one

may not want to find the minimal order optimum ooserver. One may want to

look for those observers GT, T EZ-r, where the number of nonzero entries of
T V.

T(k + 1) A(k) P(k), T(k + 1) A(k) V(k), and P(k) is kept to a minimum. No

systematic way of finding such observers is available; in general this will

depend on the specific problem under consideration.

(C) Detectability and Observability

Detectability is a weaker condition than observability (see rheorem

3.5.4). Essentially, detectability implies that in noise free situations,

one can deduce the current state (but not the initial state) of the system

if given infinitely long observation period, and so it is not the same as

asymptotic observability" (if such a concept can be defined). In all

sequential estimation problems, one is interested to estimate the current

state rather than the initial state of the system, so one would expect

that detectability would be the intrinsic property which will assume nice

behavior of the minimum error covariance when noises are present. This

physical intuition was verified in section 3.6. We showed that detecta-

bility of linear system gives the necessary and sufficient condition for

This viewpoint is due to F.C. Schweppe
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uniformly bounded Z (k) and the existence of its steady scate behavir-

Observability implies that in the noLse free situation, we can deduce

the initial state of the system if given a long enough observation period.

Of course, knowing the initial state will enable us to deduce the current

state; but as long as sequential estimation is the goal, the knowledge

of initial state will be nice but not absolutely necessary. Except in the

smoothing estimation, where we are interested in finding not only the

current estimate, but the whole trajectory estimate; thus in this situa-

tion, detectability may not be enough to assure the "nice behavior" of

7 (k); we need observability of the system.

In the development, we assume an a priori distribution on the initial

state x(O). This assumption can only be justified if as time advances

and information accumulates, the resulting performance will be independent of

thea priori distribution of x(O). Assume that the true mean of x(O) is

x' but we guess its mean to be x . Since the mean of the state of --o -o

satisfies (a.s.) the deterministic equation described b;/ g1 (see section

2.3), then detectability implies that even with a wrong assumption on the

mean of x(O), the optimum observer will give an asymptotically unbiased

estimate Thus as k W , (k) truly represents the error covariance.

From theorem 3.6.3, we see that in the steady state period, the error

covariance is independent of the covariance of x(O). Therefore if S2 is

detectable, the performance will "merge" when information accumulates even if

we started off with different assumptions or. the statistical law x().

Thus detectability justifies the assumption on knowing the mean and co-

variance of x(O).

LI
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(D) Secuentiallv-Correlared Observation Noise

The derived results are also applicable to the case when the observa-

tion noise satisfies: [see equation (3,3.1) for ,]

( - 1) =(k)n (k) + ",(k) ,'(k) (3.7.13)

where {-,(k), 0, (0), x(0), and _ 0are independent with statistical

law (3.3.2), (3.3.3) and

-,(o) . -n, -((k) -G(04(k)) (.7 ,

We can define

x-k A(17) 0]

(k) Aak) ,(k)= ~

Then we have the augmented system

x(k + 1) = A0(k) + Oa(k)(k) + ¢a(k)

(3.7.16)

0% ) [zkil]X(k

a

We can apply the derived results to the above system S2" Note that

a n+mx (k + 1) c R , but since the noise free observation is of dimension m,

the minimum order optimum observer is of order n. This problem has also

been consideree. by Henrikson [46], Bryson and Ho [431 using a different

approach. We can easily verify tha: the results obtained by applying the
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derived results to this special class of problem ; they are t&e same as those

obtained by Henrikson. This special application will be considered in a

future investigation.

3.8 Perspective

Observers for a linear system were introduced by Iuenberger [351,

P6]. He only considered continuous,lIlnear,time invariant systems. Ob-

servers for discrete,linear,time invariant systems were discussed by Aoki

and Huddle [37] in relation to a constrained estimator problem. Observers

for discrete linear time varyiag system were first introduced and studied

by Tee and Athans [381.

Optimum linear filtering for discrete linear time varying systems was

investigated by Kalman [39], [40] using Lhe projection theorem approach.

Deadbeat 4stimator for discrete time invariant system were derived by Kalman

[41). The ubiased approach to optimum linear filtering problems was used

by Athans and Tse Ul01, Tse and Athans [38]; the unbiased approach to non-

linear filter was used by Athans, Wishner, Bertolini [42].

Vetectability was first introduced by isonham [32] as the dual concept

of stabilizability. Detectability as defined by definition 3.5.1 seems

to be more appropriate and more general than that of Wonham's (Wonham con-

sidered only tile time invariant case),

The asymptotic behavior of winimum error covariance for discrete

linear systems were not investigated in full detail in the current litera-

ture. Deyst and Price [28], Sorenson [29], and Aoki [30] considered to

some extent the asymptotic properties of the minimum error covariance. They

confine themselves to consider the special case when the observation noise

is regular ((k) 0 0). Little or no attention is paid to the case when the



observation noise is degenerate (0(k) 2 0) or sirilxar (_q(!-) = 0).- The

treatment in section 3.6 is original, a-ad z-onsider- all different cases

in a unifying manner.



CHAPTER IV

OBSERVER THEORY FOR CONTINUOUS TIME LINEAR SYSTEMS

4.1 Introduction

The problem of state estimation for discrete linear systems was con-

sidered in detail in Chapter III. Tn this chapter, we shall consider the

state estimation problem for continuous time linear dynamical systems.

Aside from the fact that state estimation is of prime importance in the

design of optimal control systems,the problem in itself is of great impor-

tance in the design of modern communication systems.

The structure of this chapter is as follows. In section 4.2, we con-

sider time-varying deterministic linear systems; the notion of a determin-

istic observer and estimator for a continuous linear system is defined and

we prove that classes of observers and estimators can be constructed if

the dynamics of the system are known. Equivalent classes of observers and

the classes of minimal order observers are defined and some preliminary

results on parameterizing equivalent classes of observers are obtained. In

secticn 4.3, we extend the deterministic notions to stochastic systems

where we show that some classes of observers yield unbiased estimates. By

some physical considerations, we restrict the classes of observer-estimators

that shall be considered. We then determine tioe class of minimal order

observers that ield minimum vaLiance estimates by formulating the problem

as finding the minimal function of a certain restricted solution set and

then using theorem 2.6.3. We then show that the class of minimal order

optimum observur-estimators yields the conditional mean estimates of the

stage. This reveals the true nature of the derived minimal order optimum

-93-
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observer-estimator. In section 4.4, the notion of detectability of con-

tinuous linear time system is defined, and the asymptotic behavior of the

optimum estimator is studied in terms of detectability and observability

of the system. in section 4.5, we have some general discussions on the

approaches, results and further applications. In section 4.6, detailed

literature connected with the development in this chapter is listed.

Conceptually, there is little difference between discrete and con-

tinuous time linear system&; therefore we would expect the results obtained

in this chapter will be quite similar to those of Chapter III. One marked

difference between the discrete and continuous time cases is that for the

discrete time case, the observation statistic is sequential, and so each

bit of observation conveys finite amount of information in an accumulative

manner; whereas in the continuous time case, we have only a priori infor-

mation before any observation is made, and when an observation is made at the

initial time we have a sudden increase of information within a very small

interval of time due to some noise-free observatior component. We would

expect this "jump" in information to be reflected in the initial condition

of the optimum observer-estimator.

4.2 Classes of Observers for Continuous Linear Systems

In this section, we shall consider a linear time-varying continuous

system gi described by

(state eq.) k(t) = A(t)x(t) + B(t) u(t)

(output eq.) Y(t) = C(t)x(t)



where x(t) E. Rn. We shall assurne that C(t) is a differentiable time-

varying nxm matrix of rank m, for all t c to,o1] (n zin). For a fixed

t t -]~ c the set of complem~entary matrices of order s frr C(t) is denoted

by SI(C(t);in,s,n) ={T(t) c M n:N (T (t) n N (c (t)) 0 n R e . we note

that T(t) C f.(C(t);in,s~n) if and only if there exist matrices P(t),

V(t) (of appropriate dimensions) such that

NOVO~t + v(t)C(t) = 1 (4.2.1)

LDefinition 4.2.1: A linear time varying system of dimension s 2: n - ma

z~) Ft~~t +D~)~t)+ G(t)u(t) ; ~)=z (4.2.2)

is an s-order observer for the system ~,if for some choices of z0 the

solution, z(t) of (4.2.2) equals

z(t) = T(t)x(t) ; t > t (4.2.3)
__ __0

for some T(t) c P(C(t);m,s,n), t >t 0 We shall also say that the observer

00

c

Let T(t) be an sxn matrix which satisfies the differential equation

T (t) =F(t)T(t) - T(t) (A(t) - L(t)C(t) + b(t)Cg(t) ;T(t )=T (4.2.4)
_ __ _ _ 0 -o

where L(t), F(t.), B(t), T are some prescribed matrices of appropriate
-o

dimensions. if we construct a time varying system of dimension s a n - m

0': (t) =F(t)z(t) + (b(t) + T(t)L(t))y(t) + T(t)B(t)u(t) (4.2.5)
5-



tnen using G2),we have

dt

and if we choose T x(t t ~ ) hen T~~~:=z(t), r E
0~ 0 -00

Therefore r,' will be an s--order observer forg i-%;' by so-e appro-
5 I1

oiriate choices oi L(r), =(t), b(t), 7the sclution, T(t) of (4-1.4) will

be in the set of co--nler-enrarv matrices o: order s For C(r), t -

B3Y assunvrion, C(t) is diftferentiable for all t t I;thus there

exists a '-unczion 7 (t) .(-),jnt tsuhta (E) is

differentiable.

Theoen .2.: Lt Tr) (C(r);=,s,n), r, and ~()is differentiable

in the interval Ur,) Then, there exists a class of s-order obserrers

00

Proofj: Let 5(-,), t(t', t 1 , be matrices of apropriate dimension stich

that

NO_ + (t)C(t) =I ; t to 0 (4.2. 7)

Choose for t > t

b(t) ':T(t)A.(tV(c) + T(t)V(t) (4.2.8N

F(t) - (t)A~tPt T(t)P(t) (4.2.9)

T 0 0(& (4.2.10)

A whte) L(t)C(t) (4.2.11)
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and L(t) is an arbitrary n.- matrix. With these choices of .D(t), F(c), and

T L, we have the solution of (4.2.4)

-r 0 O-A 0 d-.

-t

0 (4.2.12)

where .F(t,o 
+  and :.(t,te) are fundamental =atrices associated with F(t)

-r 0 a

and A (t) respectively. Using (4.2.7) and (4.2.9) the integrand of (4.2.12)

becomes

-t d:(-
_ _,) () .: +V(-) C(]:i(-,tOd- = [:(t,-)T(t)- +

";-to+
) 0
~ds_(E,:)

, (-,t) d (:):;(:,t)d. = L:)_: (t,tor(C ):(to~r)S-'F d- d- -- o-.- - -!-.A

("4.13)

Combining (4.2.12) and (4.2.13) we have

T(t) T(C(t)-m,s,n) , t > t (4.2.14)
0

So an s-order observer can be constructed by (4.2.5). We note that by

choosing different L(t) M, t > t , we obtain a class of observers de-

scribed by the same T(c), t > t . For a fixed i(t)
0

t to, and a fixed L(t) c M t > to, we shall use the symbol O C(L) to

represent the observer which is specified by i(t) and L(t), and

T (3 {T T(L)/L(t) - .l I the class of observers which is specified by tTl --c nm"FoLac Ic ic Ic

For each 0 I,, we shall associate with it an estimator-I C(L)
T T T

described by (Figure L.1)

i(t) = (i(t)(A(t)-L(t)C(t))_(t)+T(t)_(t))z(t)+(i(t)(Aft)-L(t)C(t)-(t)

1c CL):
L +T(t)iT(t)+T(t)L(t))x(t)+i(t)B(t)u(t)

w(t) = _P(t)z(t)+.(t)y(t)

(4.2.15)
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If we know x(to), then by setting
0

zK(t+) i(t+)xWt) (4.2.16)
0 - 0 -0

we have from (4.2.6) and (4.2.16) that

w(t) = P(t)T(t)x(t) + _(t)C(t)x(t) = x(t) (4.2.17)

ic

But usually x(to) is unknown, and so if we want to useP- (L) as an esti-

mating device, we would restrict the initial condition of z(t;) to be in
0

the range space of T(t).
0 0

Let V(t) F M , t > t , be a fixed differentiable matrix. Associated

with it is a set of matrix functions av = ,T(t) e M, t > t /T(t) is dif-

ferentiable on (to,') and P(t)T(t) + V(t)C(t) = I for some

P(t) E M, t C (to,O);s 2 n - mJ. For a fixed T(t) CC) we can associate-- ns' - V

with it a class of observers G and a class of estimators
T

*l TI~C(L)/L(t)

.18 T _ H M E . Therefore, for a fixed V(t), we can associate
T T nm

with it different classes of observers GlC T(t) c of different orders.

For a fixed V(t), t > t suppose that (I - V(t)C(t)) has cank

p, (p :S m): then the class -PC(L) = {1 T(L)/T(t) j V  - e)'

has full rank, t E (to,o)} is called the class of minimal order observers

associated with V(t) and parameterized by L(t). We can define the notion

of equivalent representation as in the discrete case (Definition 3.2.5).

For the rest of this chapter, V(t) is always assuned to be differentiable
on t e (t , ].

0

I
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- .r a ".3 "r 1 ". x d 't ' t ". Iu I thAt T ' (t )C(L) h ran,.

L- t t, lt L Z( t) be a given observer of order
oc c

Sn - p. Then there exists a n - p order observer O c(L), (t) c£ V such

that 0GC (L), 0 lc(L) are equivalent.

Proof: Let OC(L) be a given s-order observer; its associated estimator

elc(L) is described by

i z(t) =(T(t) (A(t)-L~t)C~t)P~t)+T(t)P(t))z~t)+(T~t) (A~t)-L~t)C~t)

T c(L): V(t)+T(t)V()v(t)+T(t)B(t)u(t) , z(toS = {T(to) ),:R n

I ,w(t) =P(t)z(t)+V(t',v(t)

(4.2.18)

with P(t), T(t) satisfying (4.2.1) and z(t) R, s -n - . Since

I - V(t)C(t) has rank n - p, we may assume without loss of generality
-n -

that P(t) is of rank n - p. P(t) is a time varying linear transformation

from Rs - Rn . We can break the transformation into two steps: map Rs to

Rn - p by a tire invariant transformation K, then from Rn -p to R" by an appro-

priate time varying transformation P(t) i.e.,

P(t) P(t)K " P(t) n(np) K (n-p)s (4.2.19)

Let us construct an n - p order observer Go (L) with t(t) = K T(t) and

the restricted observer's state initial condition 2(t ) S = {K T(t ) ' R:.

First we see from (4.2.19) that

(t)T(t)+V(t)C_(t) = P(t)K T(t)+V(t)C(t) P(t)T(t)+V(t)C(t) = I

(4.2.20)

thus we conclude that i Let 8lC(L) be the estimator associatedV t

with G. (L). To prove the lemma, we need to verify that 0(t) w':) for



9

-101-

all possible u(t) and y(t) where 0,'c) is the output of I(L). Let

+ + - Rn + +
z(t ) = T(t )a for some ut R and pick (t ) = K T(t )cL; then one can

~0 - 0 0 0

easily show that by construction

i(t) = K z(t) ; t > t 4.2.21)

for all y(t) and u(t). Then we have

1"w(t) = P(t)i(t)+VX(t)y(t) =  (t)EKz(t)4jV(t)y(t) = P(t)z(t)+tV(t)y(t) -- w(t)

(4.2.22)

Conversely, if i(t + ) =K T(t+), pick z( + ) = +T(J)a;then we have (4.2.21)
0 - 0 - - 0 0

and (4.2.22) in the same manner, and the lemma is proved.

Theorem 4.2.4: Let V(t) c M , t > t such that the rank of V(t) and

I - V(t)C(t) are p and n - p, respectively. For a fixed L(t) -M the
-n - nm

class of observeri 0 (L), T(t) e TV are all equivalent.
T

Proof: Let P(t) E Mn(np), T(t) C M(n-p)u such that

P(t)T(t) + V(t)C(t) = [P(t) V(t)] ; I (4.2.23)
Vt)]

Denote the column vectors of V(t) by v.(t), i = 1, ... , m:

V(t) =Ll(t) v2 (t) ... v (t (4.2.24)-1 7

Since V(t) has rank p, {v (t)}P%1 form an independent set, where at

is a permutation of 1, ..., m and v j > p are dependent on {v (i) ilP
a t a t M i=l

K Rearranging,if necessary, we may assume for a fixed t:

V(t) = [Vl(t) V2 (t)] (4.2.25)

Li
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with V 1(t 'I n and of rank p, while

Y.(t (t)XM ; (t) £M (4.2.26)

The matrix C(t) is also rearranged accordingly (ii necessary); wve may assume

= F~~1 (t)J tap
pnt ()- M (4.2.27)

[Cq(t)J

Since C(t) is of full rank, (4.2.23) implies that

2,1() = ~t)Tt) L~t) E M(m-p)(n-p) (..8

Using (4.2.23) to (4.2.28), we have for a fixed t:

IT(t)
[?(t) L (t)'I.. (4.7.29)

-1 [c(t) + M(t)N(t)Tft)~
Since (PL(t) VLr (t)1 E Mn (4.2.29) implies that

TI(t)P(t) I ;- T(t)L'(t) 0 (n-p)p

.g 1 (t)V 1l(t) + M(t)N(t)T(t)V1 (t) 1 1 () t (4.2.30)

From (4.2.25), (4.2.26) and (4.2.30), we have

T(t)PE(t) = I ;~ !(O)Y(t) =0(n. (4.2.31)

* We note that under the assumption on V(t)1, (4.2.31) is true for all

t -t.
0

From lemma 4.2.3, we see that to g.rove the theorem we need only to

prove that all observers 0 1 (L) c 7 PC (L) are equivalent.
T V

Let 0 c(L IrV (L) be arbitrary, i =1, 2. The associated estimators

are described by
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T. _t (Tt (~)

lc (t) = ( ~ )( ~ L(t)C(t))P .i (t)+T (t)P (0) - )+Tz( ) ~ )+ i t) '

P,~ TL) +T . (t) (A(t)-L (t) C(t))V(tjy(t)+T i (t)B (t) u(t)

++) 1
w.(0 P.(t)z.I(t)+V(t)X(t) - z.(t+)FS. = {T.(t+)ckER }

(4.2.32)

Without loss of generality, we may assume that the- P (t) E M n(n-p)

are of rank n - p. Then there exists a nonsingular matrix K(t) M,
_ (n-P) (M-p)

such that

Pl(t) = P 9(t)'(t) P2(t) = P! (t)_-l (t) (4.2.33)

and so we also have

K(t)Tl(t) = T2 (t) T1 (t) K (t)T2(t) (4.2.34)

Let us define

2(t) = K(t)z (t) (4.2.35)

Using (4.2.32) to (4.2.35), we obtain the equation for 2(t);

-(t) = (T2(t) (A(t)-L(t)Cg(t))P(t)+tK(t)il(t)P2.(t)+K(t)K- (t))_(t)

4(T 2 (t)L(t)+K(t)Tl(t)V(t)+T,(t) (A(t)-L(t)C(t))V(t))y(t)

+T 2 (t)B(t)u(t)

2(t + K(t+)IT). + T(t )a E ~S (4.2.36)

since P.(t), T.(t) satisfy (4.2.23), i = 1, 2; thus, by (4.2,31), (4.2.33)

and (4.2.34) we can easily show that

K(t)Tl(t)P2 (r) - K(t)K (t) T2 (t)P 2 (t) (4.2.37)

il()E r 2 :
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= K(t)l,(t)V(t) (4.2.38)

Substituting (4.2.37), (4.2.38) into (4.2.36) and comparing with (4.2.32),

we see for any given (t +, we can pick an appropriate
0

(t+o) - S ( (t+ _(t+))such that

izt) = z2(t) (4.2.39)

and so

w(t) = Pl(t)z (t) + V(t)X(t) = P2(t)K(t)Zl(t) + V(t)y(t)

= P2(t)z 2(t) + V(t)y(t) = w9 (t) . (4.2.40)

Thrfr Ic icTherefore Pr CL) is an equivalent representation of P.T (L); similarly, we

can prove P~lc(L, is an equivalent representation of Plc(L) and the theorem

follows.

Note that the results are different from those in the discrete case.

We see that only in some special cases equivalent classes of observers

are parameterized by V(t) - M and L(t) E M! . Because of this difference,-- ° nm - nm

our approach to the problem of designing "nice-behaved" observers and

associated estimatorsfor the continuous system gl will be slightly different

from that used in the discrete case.

4.3 Optimum Class of Observers for Linear Stochastic Systems

Consider a stochastic system g2 described by: (Figure 4.2)

k(t) A(t)x(t) + B(t)u(t) + (t)
ac (4.3.1)

1 (OX=)+ n](t)

[L C2 (t)

. . . . .. . .
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m
where x(t) E R1, u(t) E Rr, &(t) e Rn , n(t) e R ,(t) c Rm, (m > m

We assume that x(t ), {E(t), t > t_ 0, {(t), t t 0 are independent

statistics. x(t ) is a Gaussian random vector with mean x and covariance

E ; L(t), n(t), t > t are white Gaussian noises with properties

Ert 2  ()dl 0 ;EJft2rtd )(t2 f
El~ ~ Ctd~=0 1 'td~ 1  t)dt ) R(t)dt ; t 2 >t1

1l _1 1 1

El ;f n (t) dt =0 ; Ej (K r(t)dt)( It nt)dit f _Qtd =

t t .t1

(4.3.2)

where R(t) a 0, R(t) E 'M n and _Q(t) > 0, _Q(t) c M . The control u(t) is

known function of time.

Let us denote the noisy observation by x1 (t) and the noise-free obser-

vation by Y-2(t):

Y''= C (t)x(t) + n(t) ; y(t) = C (L)x(t) . (4.3.3)

Our objective is to find a "filter" whose output will be an unbiased

minimum mean square estimates of X(t). Since x(t) is a Gaussian random

process (see Chapter 2, section 2.3), we may restrict ourselves to consider

only linear filters (471. Thus we may assume that the estimate of x(t) is

given by

an: w(t) = tH(t,T,)y(t)dti + V(t)y(t) (4.3.4)

where H-,-) is annxm matrix whose elements are differentiable in both

arguments. If we demand the system e' to yield unbiased estimates of x(t),

then P_ can be realized by an s-order observer (,2c (L)I- and its associated
T

The superscript 2 is to indicate that system gcis considered.
2
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2-

estimator eg-(L) (see section 4.5). For this reason, we may view observer-

estimators as estimating devices.

Let us restrict ourselves only to some special classes of observers.

First we note that in the discrete analog, the optimum observers are

compatible with respect to the noise-free observation. This is one in-

trinsic property of the optimum observers, and this property should be

preserved when we pass from the discrete to the continuous. Thus, we st'all

only consider observers which are compatible' with respect to the noise-

free observation Y 2 (t). Since xl(t) contains white noise in the measure-

ment, therefore, in order to obtain reasonable estimate, we shall not 'bass"

Y-lt) without filtering. These physical consideration allow us to consider

2c ,
only those observer , (L) which are compatible and parameterized by

L(t) M M arbitrary and V(t) of the form- nm

V(t) = 2t)] V 2 (t) E kn(m) M (4.3.4)

All such V(t) are of rank : m - m in2 .

Theorem 4.3.1: Let V(t) be of the form (4.3.4): if there exists an observer

0 2c ( _ , which is compatible, then rank W(t) = m2 and rank
0T (L) T2)s whc

(I n - V(t)C(t)) = n - m..
lc l

Proof: By lemma 4.2.3, we may assume that there exists (T (L) lc (L)
T v

which is compatible. Let 2C(L) be the associated estimator and w(t) the

resulting estimate. Using (4.3.4), we have

e(t) = (t)-x(t) = P(t)z(t)+V(t)y(t)- (t)

P(t)z(t)+V2 (t)C 2 (t)x(tt)-x(t) Pt) (z(t)-T(t)x(t)) (4.3.5)

Compatibility is defined as in discrete case. See section 3.4.
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By compatibility we must have

C(t)e(t) = C,(t)P(t)(z(t) - T(t)x(t)) = 0 a.s. (4.3.6)

Thus in particular if -(t) - 0, q(t) 0,(4.3.6) implies that

+ + nC9 (t)P(t o._t,t )T(t )a = 0 A E Rn arbirrary (4.3.7)
-Z C - 0

where i(t) is given by (4.2.9). Since (2 (I.) -. Rc(L), therefore T(t ) may
T V C

be assumed to be of full rank, and so (4.3.7) implies that

C,(t(t)t) = 0 (4.3.8)

Using (4.3.5), we have

_2 (t)e(t) = C2(t) 2(t)C9 (t)x(t) - C2(t)x(t) = 0 a.s. (4.3.9)

x(t) can be an arbitrary vecLor in Rn; so we conclude that

C_2()V( = IM l 2  (4.3.10)

and that rank V(t) =m 2 .

From (4.3.8), we have

C2 (t)P(t)T(t) = 0 ; rank P(t)T(t) L n - m2  (43.11)

P!_), T() satisfy

P(t)T(t) + V(t)C_2(t) = ! (4.3.12)

Equations (4.3.12) and (4.3.10) imply rank P(t)T(t) n- m2 . Together

with (4.3.11) we have

rankI. - %_(t)C(t)j= rank P(t)T(t) n - 2 (4.3.13)
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By theorems 4.2.4 and 4.3.1, we see that al V(t) of the form 4.3.4

can be classified into two classes: either all 0i2e (L), T(c) j are all

' 

T2c 
c

vncompatible or all &2 (L), T(t) -V are all ccmpatible and equivalent.

We may call the former class of V(t) uncompatible and the latter class of

V(t) compatible. Thus.the classes of observers ,'nich we shall consider are

para=eterized by L(r) - M and co=patible V(t) of the form (4.3.4).

Let V(t) be a fixed, differentiable matrix function of the form (4.3.4)

which is compatible; and let L(t) E M nr be arbitrary. From theorem 4.2.4,

all observers 2TC(L), T(t) J are equivalent and thus yield the sate error

2m2c2c
dynamics. Let CT (L) -0 (L). its associated estimarore. (L) is

described by:

?c (L):e . (L: + ()V,(t)r~t)L(t)')(r-)+T(t)L (C)y (t)+T(t)B(t)u(E)_ -- _ _ _ _ _ -

w(t) = P(t) z W(t)V .-y(0)

(4.3.14)

where

L(t) = [L(C) Lgr)] L Ct) CC , L.(t) - M (4.3.15)
-l . 2nm I -1 nm2

P(t) C MnT(r) e = satisfy (4.3.12) and, in adlition, they

satisfy:

T(t)V2(t) =0 ; C(t)P(t) 0 ; C?(t)V(t) I
A2 - 2 n- 2

T_(t)P(t) = I (4.3.16)

2

We can simplify the structure of e 2C(L) by using (4.3.15) and (4.3.16):

tT
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T(t)Lt)C()P(t) = T(t)(LI(t)CW+ t)C t))P(t) T(t)L-(t)C (t)P(t)

(4.3.17)

T(t)L9 (t) - T(t)L(t)C(r)V9 (t) = -T(t)L1 (t)C1 (t)V9 (t) (4.3.18)

Substituting (4.3.17), (4.3.18) into (4.3.141), the structure of the estimator

2c (L) is given by (Figure 4.3)
T

z(t) = (T(t)A(t)P(t)+T(t)P(t)-T(t)LI (t)rl(t)P(t)kz(t)+T(t) B(t)u(t)

(r) = _(t)z(t)+V2(t)v9 (t)

(4.3.19)

By de=andinge 2c(L) to give unbiased estimates of x(t), we set (see also

section 4.5)

(t) = T(to)x (4.3.20)

where T(t), P(tC satisfy
0

P(to)T(to) + 17(to )C(to ) = I (4.3.21)

Using (4.3.1), (4.3.2), (4.3.16), (4.3.19) and (4.3.20), we have the

dynamics :f the errcr process, e(t) w(t) - x(t), given by: (see Appendix C)

+P(t)T(t)L. (t)-(t) (4.3.22)

e(t)(Q -2( t)C2(t_ ))(x - x(t))
-2 C0

and

L 2 (t) C2 (t) + C2(t)A(t) (4.3.23)

2
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Define

hL(t) A P(t)T(t)L(t) C M (4.3.24)

The error covariance is given by (see chapter 2, section 2.3)

!(t) = [A(t)-V2 (t)C_2 (t)-L(t)C()]E(t)+__(t) [A( -V2(t)_C2(t)-Ll(t)Cl(t) ]'

+[I -V (t)c (t)]R(t)r i-V (t)c (t)] '+fl(t)-Q(t)Q'(t)-i2 -2 -n -221~ -

o) = In  V2(to)C(to))-o(I - 12(to)_C2(to))'

(4.3.25)

We note that the dynamics of the error covariance are dependent on V 2 (t),

t ftc,c] and L1 (t), t e [to ,]. Note that V2 (t) and _1 (t) are not arbi-

trary but V2 (t) has to satisfy (4.3.10) and LI(t) is related to L1(t),

which is an arbitrary matrix, by equation (4.3.24). To find the optimum

class of observers, we are to find a pair {V2 (t), _L(t)}, which may be a

nonunique pair, with the above constraints which will give the "least"

nonnegative definite covariance matrix. Each such pair {V(t), L(t)

specifies an optimum class of observers. When {% 2(t), L(t)} ranges over

all c.onstrained pairs, we generate the solution set, ht , of (4.3.25). The

0

minimization problem is equivalent to finding ;V2 (t), L'(t)} which will yield

the minimal function with respect to the solution set rt
0

Theorem 4.3.2: Let C2 (t)R(t)C'(t) -. 0; then there exists a unique con-

strained pair !Lv2 (t), t E: [to , ], Ll(t), t E [to,-]) which yield the unique

minimal function. - (t), with respect to r V2(t), , (t) are given by

0

* - szc2(t )(C2 (to) zC '(t ))-
- 2-= o o-2 (4.3.26)

-2 (Z(t)C_(t) + R(t)Cr(t))L-l(t) t (.to

2 2 0
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LWCt) = Z (t)C(t)O t t - t (4.3.27)
-10

where

L_(t) 4 C2 (t)R(t)C'(t) > 0 (4.3.28)

i_(t) is the minimal function with respect to 9t and is given by
0

• -1 - -(t)= (~t-R~t)Cl(t)_l (t)C2(t))Z (t)+Z- (t)(A(t)-R( ,C'(t)'-*(t"C-,It)) '

-a (t)(C (t)L (t)C (t)+C(t) (t)C (t))Z (t)+R(t)

-R(t)C' (t)A-1 (t)C2 (t)R(t)

2 -2

z (to) = - z C(t )(C (t )Z C'(t)) -c (t )z
o -o o- o -2 o-o-2 o -2 o -o

(4.3.29)

Let Pt be the solution set of (4.3.25) when {V2 (t), i(t)} ranges all
0

possible pairs; E (t) is also the minimal function with respect to 1 ;

0-
thus Z (t) is the Riccati function (see definition 2.6.4).

Proof: Let 1t be the solution set of (4.3.25) when {_ 2 (t), l(t)} ranges

0

all possible pairs. Compare (4.3.25) and (2.6.1) with

z (t) -e(t,to_ (tol* 0

Wt] (t) (4.3.30)

H-

4q,)
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Since by assumption C (t)R(t)C'(t) > 0, then we have

"J [_c -) "C.. .0" ct)R(t)C(t 0 (4.3.31)
Ii-. .T. +192 *. -' R0-t)(0:(t

and so the unique minimal function is given by: (see (2.6.19) to (2.6.21))

-1 * *-_ (t) = (A (t)- R(t)C' (t)_A- (t)C2 (t))ZL" (t)+E_' Wt (A~t)-R(t) C (t)A -- (t) C2(t)) '

*-- -1 * -1
-_E (t)2() (C2t+Ct)- ( WEl~))_ (t-)+R(t)-R(t)C (tWA (t)C.E)(t)

-(t) -oZ c(to)(c(t ) E c'(t o)) C (t )E
0 o 2a o o-2o -2 o -o

(4.3.32)

and [Ll(t) V2 (t) is giver, by: (see 2.6.18)

i* "V2 (t)] =_*() •( c (t 1.-i.
Ll(t) : 2t Z (C(t) C 2 (t)]+[O R(t)C'(t)

t>t
0

v 0-1

Y2 0 -o-2 0 00oZA t)

(4.3.33)

To complete the prove of the theorem, we need only to show that VW(t)

satisfies (4.3.10), and L (t) is related to some L (t) c 'I via (4.3.24).
-1 nm 1

From (4.3.32), we see that

_C2 (to)z (t) = (4.3.34)

Using (4.3.32), (4.3.28) and (4.3.23) we have

d . -1-
S - (t)) = C2 (t) (t)[(A(t)-R(t)C (t)L (t)C 2 (t))'-(C 2 (t)A -(t)Cft)

-d, (t)Q-) -t2C 2 -2*

+_C1 _ - WC(t)),- (t)] (4.3.35)
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Thus we conclude that

_C (t) 0 (4.3.36)

Therefore we have

L2= [C 2 (t)Z (t)C (t) + "(t)]L (t) = I (4.3.37)

Let

= _ (r)Ci(t)-t(t) t) (4.3.38)

We can easily see from (4.3.30) that

T(t)P(t)__ t (0-2t_2t)r*t.(t4 -(t) E (0 ( C (OR -(t)

Li()= (4IY t-V (t) Z' i()C

= _E1 (t) (4.3.39)

Thus Z (t), given by (4.3.31), is also the minimal function with respect to

t
0

We now have the structure of a class of minimal order optimum observers,

02c (L*), T(t) E "C (V (t) = [0 " and its associated estimators

2c *c
PCL ), T(t) E gc*:

= (T(t)A(t)P(t)+i()p(t)-T(t)L (t)C*(t)P(t))z (t)+T(t)L (t), l(t)
2c (I -1 -1Pt+()~)T~)~tctp ) 1 -

I 2cI*+(T(t)A(t)V (t)+T()V 2 (t)-T(t)L *(t)C()V(t)v 2 Ct)

+T (t)B(t.)u(t)

w (t) = P(t)z (t) + V2(t)Y2 (t) ; zt o = _(t)x (4.3.40)
9-(t)Y-2(0 z ( 0 -- 1

with V2 (t), Ll(t) given by (4.3.32), (4.3.33) and (4.3.37); P(t), T(t)

satisfy

I
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T(t)V(t) = 0 ; 2(t)P(t) = 0 ; T(t)P(t) = I ; t > t-- 2- -'nm 2  -- -2 -'~ - - -2 0

(4.3.41)

C2 () is continuous t e [t ,'], thus we can choose Pt) which is continuous

for all t e [to ,]. From theorem 4.3.2, V (t) is discontinuous at t = t
a '2 o

and so from (4.3.41), T(t) is discontinuous at t . Since e (t) A w * ) - x(t)

is continuous at t = to, we have

e ) P(t)(z (t )-T(t Mt = )"1z (t+)-T(t+)x(t)) (4.3.42)

and using (4.3.40) and the fact that z (to) = T(t0)x 3 , we have

*+* +

z(t + t )x T(t +)V(t) (t) (4.3.43)o 0 o -2 - o Y2 -2 to)

We see that z (t) is discontinuous at t = to, and consists of the a priori

guess (T(t )x ) and a correction term due to perfect observation

(T(t )V2 (to)y 2 (t+)). The detail structure of ), T(t) . Jc*' is shown

in Figure 4.4. What we have obtained is a class of optimum mean square

estimators among a rLstricted class of estimators being considered. For

example, we have not considered the class of nonlinear estimators. Now to

prove the derived minimum order optimum observer-estimator is the truly

optimum estimator, we appeal to the projection theorem. It is clear that w (t)
is a linear functional of y2(s), s e [co,t] and 1 (s), s c [to,t], we shall

prove that the error process, e (t) A w (t) - x(t), satisfies the projection

equations

E{e*()yI(s)I = 0 , s C [t ,t) ; E{e (t)y(t)} = 0

s C [t ,t] (4.3.44)0$
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This implies that (see discrete analog and Appendix B) the optimum class

of observers will yield (a.s.) the conditional mean estimates of x(t), and

thus reveals the truly optimum nature of e C(L*), T(t) c jV
T V

2c. * c
By using PT L), T(t) e aV*, as an estimating device, the corre-

sponding error process will satisfy

_t) = (A(t)-V2 (t)C 2 (t)-L1(t)Cl(t))e*(t)+(V2 (t)C 2 (t)-I)_(t)+Ll(t)n(t)

1(to) (I - 2 (t ))(x o - X(to))
0 -n o-=2 o -o -o

(4.3.45)

where V2 (t), L*(t) are given by (4.3.32), (4.3.33) and (4.3.37).

Lemma 4.3.3: Let {e*(t), t > t 1 be a random process satisfying (4,3.45);

and x(t), t > to, be described by (4.3.1) with u(t) z 0, t > t. Then for

all t a to, we have

o*

E{e(t)x'(t)} = - 2 Ct) (4.3.46)

Proof: At t = to) we have from (4.3.44), (4.3.33) and (4.3.31) that

E{e*(t_ )x'(to) = { - -C2(o)(C (to)ZC'(t )-1C (t )1{x x'-E x(t )x'(to)}
o -n o2 o-2o -o-2 o -2 o --o-o - o- 0

=- (t o ) . (4.3.47)

Using (4.3.45) and (4.3.1) we t-ave

dE{_ t _''( ) p dt " =) (A t-2t-C(t)-Li(tl. l(t))E{e (t'x'(t)}**
de(t ('(r)) t -2

+(V2()C2(t )R(t)+E{e *(t)x' (t) }A' (t)

= (A(t)-R(t)C (t)A- (c)C 2 (t))E{e (t)x'(L)}

(t.l_q _ (t)Efe (t)x'(t)}

-Z (t)C(t)-l(t)C2 (t)E{e (t)x'(t)}+E{e*(t)x'(t))A'(t)

*(t) (t)S - (tWC 2 (t)R(t)-R(t)+R(t)C(t)A- I (t)C 2 (tR(t)
(4.3.48)
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Let us define

D(t) = E (t) + E{e (t)x'(t)} . (A.3.49)

By (4.3.31), (4.3.47) and (4.3.48) we have

NO = (r)CRt~ (~ (O)2t)Dt-E()C't

D(t)+D' (t)A(t)

D(to) = 0
0

(4.3.50)

Z (t) is the unique minimal sequence of pt and E 4.s well defined. (4.3.50)
0

implies

D(t) = 0 ; t - t (4.3.51)

and (4.3.46) follows.

,
Theorem 4.3.4: Let e (t), t 2 to5 be described by (4.3.45), and v(t),

t > t, be given by (4.3.1) with u(t) - 0, t - t . Then for all t - t 0
-:_ 0 0

E{e (t)xI(s)) = 0 s c ft ,t) ; E{e*(t)y(s)} = 0 s [t ,t]

(4.3.52)

Proof: By (4.3.45) and (4.3.1) and the properties of Gaussian white noise:

* *
E{e*(t)y4(s)} = E(e (t)x'(s)IC{(s)+E{e (t)n'(s)j

= ± (ts)[E{e (s)x'(s)}C(s)+Ll(S)*(s)]_s 0 tt)

(4.3.53)

where

A(t) = A(t) - V2 (t)C2 (t) - L (t)C (t) (4.3.54)
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. (cs) is the f nienzal matrix associated with .4(t). Zi --

le. -a 4.3.3, (4'.3.53) --- (4.3.27) ""- -=-"

E~e lv's))= ~-cs)- !(s1,C'(s'1 + 1: (s) C'(s)J=0(35)

Si=ilarly for s - [t ,], we hare(by using cccrpatibilitO

E:e (c)v;(s)_ - = -;(Es)Ete (t='(s"Cj(s) = -s)= 0 (43.5)

11he abore zhe'rcn izplies that for zero control, the cptim class of

observers and their associated es'iarors will all generate (a.s.) the con-

ditional mean esciziacs of x(t). The results also holds if u(t) -1s a

nonzero bu- kno;.n- dezerainistic control fumction, because we can always

subtract its deterministic contributiou. The case where the control is

generated ria a special class of feedback laei will be considered in

chiapter V. Note that we obtain the Kalman Filter as a special case when we

set C() 0 (4.3.29).

4.4 Asymptotic Behavior of Estinators

Let us first consider the asymptotic bebavior of classes of observers

and associated estimators for a deterministic systemg C. Then, we shall

consider the asymptotic behavior of optimum classes of observers and

co
associated estimator for the stochastic systemi g2"

Definition 4.4.1: The system g1 is detectable at 7 if there ezists an ob-

server G;1 (L), T(t) : c, and its associated estimator e1C(L):

_() = (T(t) (A(t)-L(t)C(t))P(t)+t(t)P(t )z(t)+[T(t) (A(t)-L(t)C(:))V(t)
gT~ L :  i(t)V(t)+T(t)L(t)],,(t)+T (t)B(t)u(t)

W(t) = P(t)z(t)+V(t)y(t) ; z(n) . S_ = {T(T)_a , Rn }

(4.4.1)



such that for all z(r) c S_, w(t) -x(r), as t -'. The syscem 8 is said

to be &erectable if it is detecanble at t c

We shall say a stochastic system 9 to be detectable if its decer-d-
2

nistic analog, c, is detectable.

Theorem 4.4.2: The svsten Sc is detezu -!- if and only if there exists

Ic Can observer, & T (L), or, which is uaiforly asyptotically stable.

Proof; The estciation error by using any observer, .zVc(L),
I

T(t) c -3" and its associated estzator is given by (see equatio- (4.3.5))

e(t) = P(t),ztt) - T(t)x(t) ' .(t(t.-;i) (4.4.2)

where i(t,r;!_o) satisfies (see equation (4.2.6) and theorem 4.2.2)

_(t,;_ = [T(t)(A(t)-L(r)C(t)P(t) T(t)P(t)J (t,T; o)

i(tl;i) E S . (4.4.3)

Let us first assume h.t there exists soe L(t) £ M and V(t) c M

such tiat an observer 0lC(L), T(t) ,c, is u.iformly asymptotically

stable; then for all T and i : S1 , _(t,r;i-) -0 as t =. From (4.4.2)

we conclude that Sc is detectable. Conversely, if _ae system 8cis de-

tectable, then there exists an observer, lc(L), T(t) . c, such" that the

~T (LT t sc
output of its associated estimator will give exact asymptotic estimates

independent of when we initiate the observer state; i.e., for all T, and

-- 0 T

e(t) = P(t)i(t,T;o ) 0 as t - c (4.4.4)

where _(t,T;_) is given by (4.4.3). We may assume P(t) to be of full

rank: thus (4.4.4) implies that the system (4.4.3) is uniformly asymptetically
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stable, and so the observer & 1C), T(t) £ UE, is unifoz-1y asy -toricaiy
T

stable.

A lfr-ear syste=

i(t) = A(t)x(t) (4.4.5)

is said to be exponencia-ly stabi i there exists '1, 2 > 0 s-chi that

~2 (4.4.6)

where 4(t,.) is the fundamental atrix of A(t). We also say that the

=atri A() is exponentially stable. Theorem 4.4.2 zel;Les detectability

to the structure of the observers. Since exponentially atable implies

uniform asynptotic stability and vise versa [48], the above le-a implies

that the system 8 is detectable if and only if there exists an observer
c.. c

0T (L), T(t) -;rc, such that the error of estimates (in the noise free

case) by using eTc (L), T(t) cZ ,has the bound

Ile(t)li - ale - a 2 t - t 0 (4.4.7)

where t is the initial time. We may call such an estimator P c(L) an
0 T

exponential estimator. [49]

Theorem 4.4.3: If there exists _.2 (t) e Mnm2 of rank m2 and L (t) C M nm

such that (A(t) - V2 (t)_ 2 (t) - Ll(t)C (t)) is exponentially stable, then

the equivalent classes of observers Tlc (L), T(t) c U, where

V(t) = [ 2 V2 (t)] and L(t) = [,l(t) L2 (t)], _2 (t) arbitrary, are all

1c cuniformly asymptotically stable a i so e (L), T(t) C ' will yield ex-

ponentially consistent estimates.
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Proof: Ler us consider the class of V(c) of the forn (4.3.4) wit rank

VI(t) = r. The error, e(t) w(t) - x(t), of estimates by using Y(t)

within this class is given by (see also (4.3.22))

e_(r) = (A(t) - v2 (c)j_(t) -. l7d)C(t).e(t) . (4.4.8)

By assumption, there exists V s(e .n of rank m,; and _(c) m n=9 , suc,

that (A(t) - V 9 (r)C,(t) - L (t)Cl(r)) is exponentialI, stable, thus the

theorem follows from (4.4.8) and theorem 4.4.2.

Theorem 4.4.3 gives us a sufficiency test for detectability; it also

indicates how we can construct an exponential estimator.

For the stochastic system S the class of minimal order optimum ob-

servers and their aosociated estimators are given by (4.3.39) and (4.3.42);

the optimum error covariance ' (t) is given by (4.3.29). We shall now

investigate the asymptotic behavior of the class of minimal order optimum

estimators via Z (t).

Theorem 4.4.4: The matrix function (t) will remain bounded for all

t C [to,'] if and only if there exists V2 (t) e m and L,(t)
nm nm

such that (A(t) - V 2(t)C2 (t) - l(t)CW(t)) is exponentially stable.

Proof: This follows immediately from theorem 4.3.2. The reader is re-

ferred to the proof in the discrete analog for the detailed argument. Using

theorem 4.4.2 and 4.4.3, we see that (2c(L*),.T(t) E 3 *, is uniformly
T v

asymptotically stable.

Corollary 4.4.5: If (A(t),C(t)) is uniformly completely observable, i.e.,

$there exists > T > 0 such that

rt+T
M (T) = (o,t+T)C'(a)C( )A(Ot+T)di ; t E [toc] (4.4.9)

t 0
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has rank n, then tE.cre exists L(t) e :n= such that (A(t) - L(c)C(t)) is

exponentialv stable.

Proof: Apply theorem 4.4.4 to the special case when m2 = 0; i.e., all

observation chanels are corrupted by w.-ite Gaussian noise. The cpt-imum

error covariance will remain bounded if and only if Ehere exists L(t) c M

such that (A(t) - L(t)C(t)) is exponentially stable. If (A(r.,C(O)) is

uniformly completely observable, the optimum error covariance will remain

bounded for all t c [to, ], and so the corollary follows.

Let us consider the tine invariant case where A, C I, and C-21

are consta.t and bounded matr1ces.

Leeca 4.4.6: If the pair (A,_C) is observable, then the pair

LCA,j

is also observable.

Proof: Construct the matrix

t
0

(L d,(o,))C' d( 0o ,)
= '(o,-)C'C__ICA(o2t)Ho + _ doI -- - do do

0 0 (4.4.10)

n
Let x c R such that x'M(toT)x = 0; then from (4.4.10) we have for

C [to ,]:

C (, ( =,T)x =x = y Rm (4.4.11)
1-A --2  -- (a x

where y is a constant vector. Suppose that x # ,0 let x =A(toT)x' then

x # 0; let x = A(t,r)x, T > t > to, also x 0 0. Since A is constant,
*-0 1 -l A -Tx 1 -1

I
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we have from (4.4.11) that

-2-,, )x -o -t- (,)x Y E : [cop,1 (fa.4.12)

= CA.(a + tl - r ,ijx = v C [ to'- - tj + to)

(4.4.13)

Thus x x 1. are indist~rnguishable by observing the output in the nonzero

interval [t,,:-. t + t 0 . This contradicts the assumption that (A1C) is

bservable.

Lemma 4.4.7: Let =0; the solution of (4.3.29), denoted by.L (t;0Q) will
-o

reach a steady state Z which satisfie.'

Z _AC' _1 C"
1  A-I*

0(A- -2-t -2 A_ + Z (A-R C2ACA)' A

--2-R -2A C R2-- (4.4.14)

if and only if there exists 2Yt), (t) such that (A -- '-

is exponentially stable.

Proof: Let us consider E (t;0) as a minimal. function with respect to the

solution set B t . With the assumption that Z 0, we have (t 0) 0
0

from (4.3.25), and so

ft
0 (4.4.15)

I ~ ~ where .(t,T) is the fundamental matrix associated with (-V(tC-Ll(t)C1 ),

an -2() L 1(t) are given by
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* _ O--2 R t;~ t (4.4.16)

L* E =z (t;O)Cq !f ; t > t 0  (..7

Let ~(t = 2(r+ o, i(t)= £(t o) an ~"(t,r) be the fundamental

G - f1

matrix associated with (A -
0 () ZrC. Clearly we have

6 tr (t + O,T + 0) - (4.4.18)

Let E (t;O) t~ t be the solution of (4.3.2,5) with Z (t ;O ,thus
0 0

ZCO 13 . Since E (t) is the minimal function with respect to 0 , we

0 0

* have

* 0

0 00

Also we have from (4.4.18) and the definition of V (t), L (t) that:

Sto

0

-t

0

(t) (4.4.20)

Combining (4.4.19) and (4.4.20) we have

L (t;0) a E (t - o0.) z z (t 0 ;0) .(4.4.21)

The lemma follows from theorem 4.4.4 and the monotone nondecreasing nature

of Z (t;0) as t increases (4.4.21).

Theorem 4.4.8: For all Z > 0, the solution of (4.3.29), denoted by

-00
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Jthere exists V (t), il(t) such that (A V M()C 2 - rP)Ci is exponentially

stable.

Proof: From (4.3.29) and (4.3.25) we have

.L t;.)- (t ;OD = Z - EC'( Z2- C' C. (4.4.22)

There fore, from (2.6.21) we deduce that

F (t;z_) 1 E *(t;Oq) , t E [t ,'] . (4.4.23)

- -o

0 S E (t;E )-E (t;0) (t, t ). (t ;)'(t, t (4.4.24)
-0 0 0 00

where (t,t ) is the fundamental matrix associated with (A-Vt 20L t-

and VK2(t), Lk(t) are given by (4.4.16) and (4.4.17). 6(t,t ) is exponen-

tially stable if and only if there exists V2(t), L ±(t) such that

(A - 2 tC 1 t0)is exponentially stable. Using lemma 4.4.7, we

obtain the theorem easily.

From lemma 4.4.6, and corollary 4.4.5, we see that observability of

the pair (A,C) is sufficient tc assure that E (t;Z ) E~ satisfying

* (4.4.14) where Z > 0 is arbitrary.

4.5 General Discussion

In this chapter, we considered the estimation of deterministic and

stochastic systems using the observer approach.

In the deterministic case, sufficient conditions for existence of

exponential estimator have been derived; such estimators can be realized

by an observer (c (LT 3)c ~ , wihis asymptoticallystbean is

associated estimator Plc(L).



-128-

In the stochastic case, the minimal order optimum observer and its

estimator are described in detail in Figure 4.4. The optimum error co-

variance, Z (t), is given by (4.3.29). Asymptotic behavior of the minimal

order optimum observer is investigated via the optimum error covariance

Z (t). Necessary and sufficient condition for E (t) to be uniformly

bounded have been established. The condition is related closely to the

structural property of the system 2 under consideration.
2

In the following, we shall discuss different points which are rele-

vant to the whole development in this chapter.

(A) Unbiased Estimates and Observer-Estimator Structure

Let 2 be a stochastic system described by (4.3.1) with u(t) 0.

Let an unbiased estimator F. be given by

w(t) H(t,-)y(,)dtr + V(t)y(t) (4.5.1)
t

0

where H(.,-) is an nxm matrix whose elements are differentiable in both

arguments. Since EJL(t)j = Ej.(t) , from (4.'3.1) arid (4.5.1) we have

:t
, t,t )x dT + V(t)C(t)IA(t,to)X = 6 (t,t )x (4.5.2)

o0-0 -0 -A 0 -0
0

where (t,t) is the fundamental matrix associated with A(t). The structure

of the estimator should be independent of the mean of x(to), x, thus
0

(4.5.2) implies

H(t,T)C(T.)JA(,to)dT + V(t)C(t)iA(tt o )  = t.A(t,t o )  . (4.5.3)

L
0

Differentiate both sides of (4.5.3) in respect to t.

1 i(t,t)C(t)+[ 3t C(T)A(Tt)dT+V(t)C(t)+V(t)C(t)+V(t)C(t)A(t) = A(t);- - Jt t - ' . . . . . . . ._

it
0 (4.5.4)
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Multiplying both sides of (4.S.4) by w(t) and taking expectations

t

0

(4.5.5) is satisfied if H(t,T) and V(t) satisfy

ft((t)Ht,T) + al1t,T)) Y(T)dT =-G(t)y(t)y(t) (4.5.6)

where y(t) i~s a rn-vector valued function of t; and

G(t) =H(t,t)C(t) + V(t)C(t) + V(t)C(t) + V(t)C(t)A(t) - () (4.5.7)

Let us denote w(t) =f H(t,T)y(x)dT; we have
t
0 It

S(t) ! (t t)y-(t) +
-l to

= H(t,t)y(t) - G(t)E1 (t) -G(t),V(t)y(t) . (4.5.8)

The unbiased estimator is realized by

_ = -G(t)w 1 (t) + (H(c,t) -G(t)V(t)).X(t)

8: (4.5.9)

W(t) H1 (t) + V(t)yX(t)

By some transformation of coordinates, the unbiased estimator P8 can be

realized by

F, (4.5.10)

W(t) = P(til(t) + V(t)Y(t)
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Si=ce ' an unbizsed estimator. we have at t = t0

X - P(t)Z(to) + V(t )C( -)x (4.5.11)
0- 0 0-0

If "(C -- Z(C(C );=,sm) and P(t I is such that

7it o) is + IL(c (t)= (4.5.12)
-

have _ - - - -

"t

) + (7t )x (4. 5.1 3)

'Me struc-mrt of zhe esti=tor is recuired to be indevendent of x, there-

fore (4-5.13) !=Iies

NO O+ V(t)C(t) 1 (4.5.14)"-1

where t(r) is given by

T't) :(t,to )-(tE ) _A(to:t) + (,:)D(:)C(:): (:.,t)dz . (4.5.15)
- 0 = - 0 -F -

0

3- zo-par-ing with (4.2.4,) and theorem 4.2.2, such an estimator can be
.lc.. _

realized b: an observer T (L), -(t) - and its jssociated estimator

eSC(L), -here L(t) z H is arbitra-y.T - nm

Thus ze see that the concept of an observer is in some sense equiva-

lent to the concept of unbiased estimator. When the a priori distribution

of x(t ) is kno-n, the minimal order optimum observer-filter gives un-

biased minimu*m nean square estimates;whereas if the a prioridistribution
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of x(t ) is unknown, the minimal order optimum observer-filter will be

an asymptotically unbiased minimum mean square estimator.

(B) Estimation for Linear System

The observer theorem introduced in this chapter generalizes an4

unifies estimation theory for determiniszic and stochastic systems. For

both deterministic and stochastic cases, the structure of the estimators

are the same. In the deterministic case, we are to find certain parameters,

V2 (t), kl(t), so as to obtain exponentially consistent estimates, whereas in

the stochastic case, the optimum choice of V2 (t) and L (t) is specified by

the noise statistical law and th detailed structure of the system- Thus

we see that in the deterministic case, qualitative theory should be used

in designing well-behaved observer-estimator; [49 ] whereas in the stochastic

case, optimization technique can be applied to derive the class of minimum

order optimum observer-estimator.

(C) Kalman Filtering Technique

We can also s-Ive the stochastic problem in section 4.3 by using the

Kalwan Filtering Approach.' Let us consider the system 92 with u(t) 0.

Let T() c Mn such that
n(n-m 1 )

IT(t)1

is of full rank. Define

= T(t)x (t) . (4.5.16)

This approach was suggested by I. B. Rhodes.

ti
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Then we have

:X(t) (t -2 V(t)Y-2 (t) (4.5.17)

where

[P~t) V 2 ()] =F~r)(4.5.18)

We have the equation for x1(t) andzt

C,() (i _ j_ _ _ ) _ _T~)&t-

Sine ~ t-C 1 (t) 2 (t)X2 (t) C C(t)p(tOx (t)+i(t) (4.5.19)

Sine y(t)can be observed exactly, we can assume it is known. Now

apply a Kalman filter to the system (4.5.19): the best mean square esti-

mate of. 1 (t) is given by

Alt (i'(t)P(t)+T(r.)A(t)P(c-)- -(t)P' (t)c 1,(t)_q -1(t)Cl(t)P(t))R (t)

+(i(t)V 2 (t)-tT(t )A(t).L2 (t))y2 (t) (..0

and 2i(t) satisfies

Z(t) =(T(t)PE(r)+T(t"A(t)P(t))L(t)+Z(t) (T(t)P(t)+T(t)A(t)P(t))'

4 ~)~)'t-~)EtC~)q-1 (.It o m(4.5.21)

1(t0  T(t )Z T' t)

0 00
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The estinate of x(t) is given by

_(t) = P (t) + (c),(t) (4.5.22)

The estimation error covariance matrix is given by

Z(t) P(r)i(t)P'(t) (4.5.23)

Therefore

_(t) = P(t)()P' (t)+P(t)l(t)P' (t)+P(t)i(t)P' (t)

- (P(t)+P(t)±(t)P(t)+P(t)T(t)A(t)P(t))_(t)P' (r)

+ P(t)z(t) (P(t)+P(t)+f(t)P(t)+P(t)T(t)A(t)P(r))'

+ P(t)T(t)R(t)T' (t)E' (t)-P(t)E(t)P' (t)C (t)- (t)C (t)P()_ (t)P' (t)

=(A~t) - V2Ct)C2(t))E(t)+Z(t) (A~t)-VK2(t) 2(t))'

+ I (t)C 2 (t))R(t)_(I-V2(t)C2(t))'-_(t)C (t)- (t)C,(tt

(4.5.24)

The initial condition is

_(t) --2(to)C2(to ) --o(-n -V2(to)2to))' (4.5.25)

We note that the error covariance depends on V2(t) which must satisfy

C2 (t)V.2 (t) = I (4.5.26)

To find the minimum mean square estimates, we have the optimization problem

of choosing V2(t) satisfying (4.5.26) and yielding the "least" nonnegative

definite E(t). Note that (4.5.24), (4.5.25) is the same as (4.3.25) with

l(t) = _(t)C{(t) -Ct) . (4.5.27)
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One can easily show that the optimum estimator derived by using the

Kalman filtering approach is a minimal order optimum observer-estimator.

Before comparing the merits of Kalman filtering approach and observer-

estimator approach as developed in this chapter, the author would like to

point out the falacy of an initiative conception by using the Kalman fil-

tering approach. This is best explained but giving a specific example.

Consider a linear time invariant system described by

E + (4.5.28)
k 2 ( t )  -a J-xtJ

The observations are

Yl(t) [0 lx(t) + n(t) (4.5.29)

Y2(t) = [1 O]x(t) (4.5.30)

The noise statistical laws are assumed to be known:

E{U it()d-1 0 ; E{Q ()d-)(I c(a)do = (4.5.31)
"o0 Jo .4 r2t

rt t 2

ElI r(t)d-, 0 ; E r(t)d) = qt . (4.5.32)

Assume that the estimation process has started at - , and our objective ,.

now is to find the conditional mean estimate of the state. One "intuitive"

argument using the Kai-man filtering approach will be as follows. From

(4.5.30), we see that we have exact observation in x1 (t), therefore we can

t assume x (t) is known. From (4.5.28) and (4.5.29), we have
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(t) = - ax.) (t) x + t) (4.5.33)

yl(t) = x2 (t) + n6) • (4.5.34)

Since the system is linear and the noises are Gaussian, thus to find the

unbiased mean square estliate of x2 (t), we may apply Kalman filter to

(4.5.33) and (4.5.34). The error variance, e, in the steady state will

satisfy the algebraic equation[50]

e + 2a1qe r 2q 0 (4.5.35)

Therefore the error variance is equal to

/22+e= /a q + r2q - a1q >0 (4.5.36)

One may make the conclusion that the Kalman filter for (4.5.33) and (4.5.34)

will give us the unbiased minimum least square estimates, and the minimum

mean square error is given by (4.5.36). Unfortunately, this conclusion is

in general false; the reason for this is that the Kalman filter for (4.5.33)

and (4.5.34) give us the estimate

R2(t) =E~x2(t) IF(Yl(r); [tot))} (4.5.37)

whereas the estimate we are looking for is

R(t)= E{x 2 (t)jF(y2 (T);T [to,t],yl(s);s C [t ,t))} (4.5.38)

and in general we have the inclusion of a-algebra

SF(YI(T);T E ["-Ott))C F(Y2(T);T C [topt],Yl(S) ;s E [tolt)) (4.5.39)

To proceed with the example, let us define
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xlk(t) = [-k llx(t) (4.5.40)

where k is an arbitrary number. Using (4. 5. 30) and (4. 5. 40), wve have

x(t) = [0] xlk(t) + Y2 (4.5.41)

Taking the derivative of (4.5.40) and using (4. 5..Z8), we have

klk(t) = -(k + a2)x2 (t) - aIxl(t) + g2(t) - kl(t)

= -(k + a 2)x k(t) - (k(k + a2) + al)Y2(t) + C2 (t) - k l(t) . (4.5.42)

The observation (4.5.29) becomes

yl(t) = xlk(t) + ky2 (t) + n(t) (4.5.43)

Define

Yl1 (t) = yl(t) - ky2 (t) = xlk(t) + n(t) (4.5.44)

Since Y2 (s), s E [t ,t], is known at t, by applying the Kalman filter to

(4.5.42) and (4.5.44), we have the steady state error v-riance, ek, for

the unbiased least square estimate of xlk(t) sztisfying the algebraic

equation

e2 + 2(k + a2)qe - q(k2r + r2) 0 (4.5.45)

and so

ek = .(k + a2) 2q2 + q(k2r + r - (k + a2)q > 0 (4.5.46)

q r1  r2  a2 q

To find the corresponding estimate in x, we have
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(t) = [ + [] (4.5.47)

where Rik(t) is the estimate given by the Kalman filter for (4.5.42) and

(4.5.44). The corresponding error variar.ce for x2 (t) is

E{(x 2 (t)- 2 (t)) 2 E{(X (t)-k (t)+ky (t)-ky (t)) 2 } =()

ek . (4.5.48)

Clearly ek # e for almost all k ranging from - to . One may then attempt

to find the optimum k which give us the smallest ek. This has easily been

carried out by using differential calculus. The optimum value for k0 was

found to be:

22
k a2q + qr2  2 (4.5.49)

(q + r) 2  rI(q + r1 ) q + r 1

Substituting (4,5.49) into (4.5.46), we have the corresponding error:

)r12 (q + r I)r2q
e = (qa2 r+ q2 (4.5.50)

o q + 2r -a 2

and clearly we have the strict inequality (r! > 0, q > 0)

(q + r2
i (qa 2) r) r2q qa < (qa) + r 2 q - qa 2 = e . (4.5.51)

The inequality (4.5.51) indicates that by applying Kalman filter to (4.5.33)

and (4.5.34), we do not obtain the best mean square unbiased estimate. We

note that the optimum value of k depends on r1 , r2, and q (assume a2 is

0
fixed a priori). We may not conclude that the error e is the minimum

error variance because we only consider a restricted class of transformation

in x (4.5.40). The only way to check whether e0 is the minimum error variance

is to appealto the projection equation, or equivalently, the Weiner-Hopf equation.
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Therefore, we see that conceptually, the Kalman filtering approach

is by no means simpler than the observer approach developed in this chapter;

because one may find it hard tn visualize physically why one transformation

of the state is better than the other before the application of a Kalman

filter, besides, one may reach false conclusions if one is not careful

(see example). Note that one approach is as easy as the oLher: both in-

volve a deterministic optimization problem, and both need to verify that

the derived solution satisfies the projection equation before we can con-

clude the truly optimum nature of the obtained estimate. In terms of

derivation, the Kalman filtering approach is comparatively simpler; but

personally, the author thinks that the class of asymptotic unbiased esti-

mator is a more basic conceptual framework to many estimation problems.

The. observer approach is based precisely on this conception. One dis-

tinguishing advantage of using the observer theory approach is that it

reveals the detail structural properties of the optimum estimator. This

allows us to investigate in detail the asymptotic behavior cf the optimum

estimator in terms of some intrinsic functional behavior of the system

(section 4.4).

(D) Detectability and Observability

We note that observability is a stronger condition tian detectability.

In section 4.4, we have shown that detectability is a necessary condition

for the minimum error covariance, Z (t), to be uniformly bounded for all

t - t . In the time invariant case, observability is sufficient conditiono

for 2 (t) to be uniformly bounded and for the existence of a steady state

value of 2 (t) as t

F
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Although a proof is not available yet, It seems very likely that

detectability is also sufficient to assure Z (t) to be uniformly bounded

for all t > t
0

(E) Estimation in the Presence of Time-Correlated Noise
• C

Let us consider the stochastic system &3 described by
3

K(t) = A(t)x(t) + B(t)u(t) + &(t) ; x(t) C Rn

9 3(4.5.52)3.:

y(t) = C(t)x(t) + n(t) x(t) c R

where n(t) is a Gaussian Markov process which can be realized by:

() = (t)n(t) + y(t) (4.5.53)

x(t ) n(t ), {&(t), t > t }, {y(t), t t o are independent statistics.

The statistical laws are given by

x(t ) - Q( o °

0 0 x

(t) q.(,v ,o
0- -- -

(4.5.54)

t ti
f 2 r(t)dt Q(O, 2 R(t)dt)

SI 2 n ( tO d t  VO f( ' t R n ( t ) d t )

ti "1

Define the augmented vectors

x(t) 6: e+ -a(t) I C R+m (4.5.55)

and the augmented matrices
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A1t - 1~
Aa A~): .a .a BAat W ; a(t) = [C(t) T (t) .. (4.5.56)

[0 0~)

We have the equations for the augmented system

-a a a a ax (t) = A (t)x (t) + B (t)u(t) + EaCt)

ac (4.5.57)
a

x(t) = ca ()xa (t)

We can apply the derived results to the system gc. Note that the minimala

order optimum observer-estimator has dimension n. In the special case

when C is a constant matrix, we can easily verify that the results obtained

agree with those obtained by Bucy [52]. In the general case, the results

agree with Bryson and Mehra who considered the problem using the weighted

least square approach. Application of the derived results to this special

class of problems will be considered in detail in the future.

4.6 Perspective

Qualitative estimation theory for the deterministic system C was considered

by Luenberger [35], Johnson (491. Optimum filtering theory for stochastic

linear systems was firstconsidered by Wiener [51]. Kalman and Bucy [501

consider the special case of estimating the state of a Gaussian Markov

process in the presence of nondegenerate Gaussian white observation noise.

Estimation in the singular situation (i.e., noise free observation) was

considered by Root [54]. (See aino Van Trees [471 for detailed bibliography.

Estimation in the presence of colored noise only was considered bV Bucy

[52], Mehra and Bryson [53], Geesey and Kailath [55]. The consideration

in this chapter provides a unifying approach to linear estimation problems

in general. This approach is valuable in the way that it reveals the in-

trinsic structural properties of the estimating device.
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The asymptotic behavior of the estimator was not investigated in

detail in the literature save for the case of estimation in the presence

of nundegenerative Gaussian white observation noise [50]. In this special

case, the asymptotic behavior of the optimum estimator was investigated

through its dual relation with an opti-mal regulation problem [50]. The

investigation in section 4.4 is original. In this contribution, we can

study, in all gen.ral situations, the asymptotic behavior of optimum

estimators; it also provides the concepts required for qualitative estimation

theory for deterministic linear systems.

S
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1= this chapter, we are :ainWy cmcerned withb the -r,.blen of con-

t-i g a -L-ear syste= wih knaw.-rn -'cs, mder che assu:ptioa that

-eriecc _foti i= =or available. To have the problez be -o !etelv

ge-nral e ass e zha . t&ere zre --=krnzv.: dr,x;g d:sturibances- and partial

cnserva::a-= of t-cz. state in t-.-e presezice (or absence) oi ebserVatiEn

zoise. A s--cai case of che przcle= vas ivestigated by Joseph and Tou

1~. adFrank'I;n [581j Wz:2a_= [22]. 1271, iere they assi d

chat ::me ebservatin =i-vise is a nondegenerale white Jaussian process. In

.= nvestga=ica, =.we a-sue: t a- the dbserv:ation =oise is in gcneral de-

ge=erate win hzu lost z- ge.neralit. we shal! = del the vrcblen as one

where acne ourur variables can be vzservei - rfezzlv fmoise-free) while

:-e hers are ebserv:ed 1n the prese-ace of vite 3aussian . his

general mf o-..e i.c~hzes [5,J, 5S], [27) as srecial cases.

Me structure 3f this Cnrnper is as follos. in section 5.2, -e

consider the es-marion - roble for the discrete case where we are allowed

to use -eeaack control. Using the results in chapter 3, we derive a

stochastic difference equation for the conditional =ean estinates of the

current state. in section 5.3, we shall state Ehe stochastic control

proble= and the o.timality criteria is used to verify the opti.al solo-

tion. The general results are then applied to a special case where the

observation noise is sequentially correlated. In section 5.4 and section

5.5 ye treat the continuous analog of section 5.2 and 5.3. The results
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can be summarized as the Separation Theorem. In section 5.6, discussions

of results and indication of some further research is given.

5.2 Estimation with Feedback for Discrete Linear Systems

Consider a discrete linear system S 3 described by

x(k + i) = A(k)x(k) + B(k)u(k) + -(k)

3: (5.2.1)

X(k) = C(k)x(k) + n(k)

where x(k) u(k) E Rr, j(k) c e. x(O), k), n(k), k = 0, 1,

are independent Gaussian random vectors with statistical law giver by

(3.3.2) to (3.3.4). The control u(k) is feedback in nature. Let us denote

the control sequence by

U(ij) 5, ju(i),u(i + 1),...,u(j)} i > j (5.2.2)

The observation statistic at time k is U(ok_)(k), where the subscript

U(o,k-l) is to indicate that the past control sequence, U(0,k - 1). has

been applied to the system. The accumulative observation statistic at

time k is

SU(o,k-I) (k) = {Y(O) 'Yu(o)(l),... 'U(o,k-l) (k) . (5.2.3)

We assume that the control is of the form

u(k) =o(k,Yu (o ,kl)(k)) k 0, 1, ... (5.2.4)

rr
where _€(k,') is a measurable function from F(Y U(o,kI) to R. (5.2.4)

implies that the control is a function of past accumulative observation

information. In the following, we shall denote F(YUCkl (k)) by

F(k,U(0,k -1)).

I
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The information revealed by the accumulative information at time k

about the dynamical state of the system is contained in the sub-i-algebra

F(k,U(O,k - 1)). For some control purposes, the detailed knowledge of

.(k,U(O,k - 1)) is sufficient but not necessary. In most cases, since

the knowledge about the present state is necessary and sufficient for de-

signing a feedback control strategy, then the knowledge of the conditional

distribution of the present state, x(k), is necessary and sufficient (see

chapter 2, section 2.2). In the following, we shall prove that the condi-

tional distribution of x(k) can be parameterized by some finite dimensional

quantities.

Theorem 5.2.1: For the system 3 where u(k) is of the form (5.2.4), the
3

conditional distribution of x(k) is a Gaussian random vector, and so is

parame'terized by its conditional mean, 5(k;k), and conditional covariance

7(k) which are given by (k = 0, 1,...)

z(k+l) = T(k+l)A(k)P(k)z(k)+T(k+l)A(k)V (k)y(k)+T(k+l)B(k)u(k)

P 3 . (5.2.5)
-T'"

,R(k'k) = P(k)z(k)+V"(k)y(k)

Z(k + 1) = L(k) - V (k + i)C(k + l)L(k)

(5.2.6)

z(o) = -V (o)c(o)Z

where

L(k) = A(k)Z(k)A'(k)+R(k) ; V (0) = CI(0)(C(0)oC'(0)+ (0))l

(5.2.7)

and

V (k+l) c Vk(Z(k)) = {V c M_ LV[C(k+I)L(k)C' (k+l)+-(k) ] = (k)C'(k+l)}

k nI
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P(t) l(t) satisfy the relation P(k)T(k) + V (k)C(k) = I
_ ... -n

Proof: Let us break x(k) into two vectors:

x(k) = l(k) + x2(k) (5.2.8)

where x I (k), x2 (k) Rn are given by

_x7(k + 1) = A(k)x9 (k) + r(k) ; 77(0) = x(O) (5.2.9)

_il(k + 1) = A(k)xl(k) + B(k)u(k) x.(O) = 0 (5.2.10)

and u(k) is of the form (5.2.4). From (5.2.10), we note that {xl(i)ik- " ~ ' i=0

is F(k,U(0,k - 1))-measurable, and so we have from (5.2.8) that

:(k~k) = E{x.(k)iF(k,U(0,k - 1))} + (k) (5.2.11)

Let us define

y2(k) =(k) - C(k)x 1 (k) =C(k)x (k) + n(k) (5.2.12)

k kand define F2(k) 2(k)). {y(i)}0 and [xl are
7 (Y2 (0),.X(k) {vi -1 andL =pJ

F(U(O,k - 1),k)-measurable, so {y2 (i)}
k =o is F(kU(0,k - 1))-measurable;

therefore

F 2(k) C F(k,U(0,k - 1)) (5.2.13)

Using (5.2.4), (5.2.10) and (5.2.12) we have

x1 (k+l) = A(k)x 1 (k)+B(k)i(k,Yl (0)+C(0)X1 (0) ,... ,yl (k)+C(k)x1 (k))

EI (0) = 0 (5.2.14)

Inductively, we have (i=0 is F2 (k)-measurable, and so from (5.2.12),

y(k) is F 2 (k)-measurable. We have then
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F(k,U(0,k - 1))C F2(k) (5.2.15)

(5.2.13) and (5.2.14) imply that

F 2 (k) = F(k,U(O,k- 1)) (5.2.16)

Let us define

.2 (k k) = E(x2 (k) F2(k)) (5.2.17)

(5.2.11) and (5.2.15) give

x(klk) =j 2 (kk) + X1 (k) (5.2.18)

Now consider the stochastic system 39 and the deterministic system described

by

x2(k + 1) = A(k)x.2(k) + (k) ; x2 (0) =x(0) - (x,_)

5.; :(5.2.19)

y2(k) =C(k)x?(k) + _n(k)

il(k + 1) = A(k)x(k) + B(k)u(k) ; x 1 (0) = 0

91: (5.2.20)

y 1 (k)= C(k)2 l(k)

Since xl(0) is known exactly, Xl(k) can be reconstructed by any class of

observers. The conditional distribution of x2(k) given F2(k) is Gaussian,

the conditional mean, R?(kjk), and the conditional covariance, E(k), are

given by: (Chapter 3, section 3.2 and section 3.3)

2 z 2(k+l) = T(k+l)A(k)P(k)z2(k)+T(k+l)A(k)V.*(k)y2 (k) ; Z(0) = T(0)x

T' (k2Wk) = P(k)z 2 (k)+V" (k)y2 (k)

(5.2.21)
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and

E (k+l) = A(k) - V (k+l)C(kl) A(k)

(5.2.22)
= - -- C'(O)[C(O)Z C'(O) + 0(0)]-1c(OZ

- 0 -o-0

_(k) A A(k)-(k)'(k) + R(k) (5,2.23)

c'()+()-1
V (0) = C' (0) (C(0)E C'(()0(0)) ; V (k+l) e Vk(Z(k)) ; k = 0, 1,

(5.2.24)

Construct x (k) by using

z1,(k+l) --T(k+I)A(k)P(k) ZK (k)+T(k+!)A(k+I)V' k),1 (k)+T(k+l)B(k)u(k)
1-

T'

xI (k) = P(k)z 1 (k)+ X (k)y 2 (k) ; z1 (0) = 0

(5.2.25)

where {V (k)}k 0 is given by (5.2.21) to (5.2.24). From (5.2.19), (5.2.20)

and (5.2.8), we have

y(k) y (k) + y2(k) (5.2.26)

Define the vector

z(k) = Z1 (k) + z 2 (k) . (5.2.27)

By equations (5.2.18), (5.2.21) to (5.2.26), we have the conditional mean

estimate of x(k) generated by

z(k+l) = T(k+l)A(k+l)P(k)z(k)+T(k+l)A(k)V(k)y(k)+T(k+1)B(k)_(k)

(5.2.28)
T*

_R(kik) = P(k)z(k)+V*(k)y(k) z(O) T(0)x

with {V (k)}k= 0 given by (5.2.21) to (5.2.24).

h=
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Using equations (5.2.8) and (5.2.18), we have

R(klk) - x(k) = --(kjk) + _1l(k) - _xl(k) - x7(k) =i9(klk) - -_(k)

(5.2.29)

{1(k)}?, 0 given by (5.2.21) to (5.2.24) is the conditional covariance of

x2 (k), and so it is also the conditional covariance of x(k). Since x (k)

is F(k,U(O,k - ))-measurable, (5.2.8) implies that the conditional dis-

tribution of x(k) is Gaussian by virtue that the conditional distibution

of ,(k) is Gaussian.

We note from (5.2.3) and (5.2.4) that the accumulative statistic at

time k depends on the control chosen which in turn depends on past

accumulative statistics. But as long as we are interested in the present

state of the system, the information contained in F(k,U(Ok - 1)) about

x(k) is equivalent in some sense to the stati:tical information contained

in the conditional distribution of x(k). Theorem 5.2.1 says that the con-

ditional distribution of x(k) is Gaussian, and thus all the statistical

information revealed by accumulated observation statistics is summarized

by the conditional mean, .(k:k), and conditional covariance, ,(k). From

(5.2.21) to (5.2.23), we see that :(k) can be precomputed before any ob-

servation is made and any control is applied. Therefore, all the statistical

information about the state at time k is summarized in the random vector

k(k~k).

5.3 Stochastic Control of Discrete Linear Systeis with Quadratic Criteria

In this section, we shall consider the problem of controlling the

discrete linear system 3 with quadratic criteria:
3i ! N-1

J(u) E x'(N)F x(N) + ( '(k)W(k)x(k) + u'(k)M(k)u(k) (5.3.1)

k=O

A
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with F 2: 0, W(k) Z 0, and M(k) > 0. We are to find a control law of the

form (5.2.4) "hich will minimize (5-3.1) subject to (5.2.1).

Using lemma 2.2.6 and (5.2.4), the cost J(u) can be rewritten as:

N-I
J(Cu) =E IE{x'(N)F x(N)IF(N,U(0,N-I)} + 2:E~x'(k)W(k)x(k)+v.'(k)M _(k)u(k).

k=O

F(k,U(O,k-l)) 4
N-!

k=O

N-1

+tr~f E (N) + 2: H(k)Z(k)) (5.3.2)

k=0

where {Z(j)1}0 is given by (5.2.22) to (5.2.24). Since {-(J)}N is inde-
__0 j=0

pendent of the control, minimizing (5.3.1) is equivalent to minimizing

N-I

J'(u) = E{V(NIN)F (NIN) + :('(kjk)W(k)R(kIk) + u'(k)L1(k)u(k)) .

k=0 (5.3.3)

From (5.2.5), the equation for R(kIk) is given by

,(k+llk+l) = A(k)R(klk) - V (k+l)C(k+l)A(k)(R(kjk) - x(k)) + B(k)u(k)

!*
+ V (k+l)C(k+l)E(k) + V (k+l)n(k+l) (5.3.4)

i*

where V fk), k = 0, 1, ... , N are given by (5.2.21) to (5.2.23). The

process {x(k)N is given by (5.2.1). We have now a stochastic problem
k=O

to solve: Find a control law of the form (5.2.4) such that the cost (5.3.3)

is minimized subject to the constraints (5.3,4) and (5.3.1).

Lemma 5.3.1: The control law

Ru (k) = -(M(k)+B'(k)K(k+l)B(k))iB'(k)K(k+l)A(k)_R(kjk) (5.3.5)

I I K(k) = A(k)(K(k+l)-K(k+l)B(k)(M_(k)+B'(k)K(k+l)B(k))-IB(k)K(k+1))

A(k)+14(k) ; K(N) = F (5.3.6)
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is the optimal control law to the above stochastic control problem, i.e.,

N
let {u(k))kN be any control law of the form (5.2.4), we have

k=0

J' (u) - J'(u) (5.3.7/)

The optimal cost-to-go is given by

N-1
JV(k,i%) -1 E q'(NIN)E R. (NIN)+ ' (ili)W(i)R (iji)+u ')Miu(i) IR*(kk I _Q

i=k

N-1

= _'K(k)_+t rZ (A (i) - (i+l))K(i+l) (5.3.8)

i=k

Proof: We shall prove the lemma by using the Optimality Criterion (theorem

2.4.3). Let us define for k = 0, 1, ... , N
N-I

C(k,_) - _'K(k)k + tr (A(i) - Z(i + l))K(i + i)

i=k

N-1

'K(k)x^ + tr (V2(i + !)C(i + l)A(i)K(i + 1) (5.3.9)

i=k

where {K(k)}k=0 satisfies (5.3.6). We have from (5.3.6)

C(N,_ ) = R (5.3.10)

Let U(0,k - 1) be arbitrary control sequence, and denote

R= E{_i(klk)jF(k,U(O,k- 1)1} = E{x(k)IF(k,U(O,k - 1)) . (5.3.11)

Let

"k (kl) =A(k)_ - V(k+l)C(k+l)A(k)(:-x(k)) + V (k+l)C(k+l) (k)

+ V(k+l)n(k) + B(k)u (k) (5.3.12)

0V*
x (k+l) = A(k)R - V(k+l)C(k+l)A(k)(R-x(k)) + V (k+l)C(k+l)&(k)

+ V(k+l)n(k) + B(k)u ° (k) (5.3.13)



* 0

where u (k) is given by (5.3.5) with R replacin kk)adu (k) is

F(k,U(O,k - 1))-measurable function. We have from (5.3.12), (5.3.5),

(5.3.6):

E{R'W(k):R+u too _,~k~ (k)JP(k,IJ(O,k-l)) = _ _ _ _ _ _ _+I)Ak):

= ,OK(k)!(k)-c I ~)K(kly:k (k+ +u(k)(()t '(k)_(k)B(k))* (k)

+~'' ()K~~iE(k)ua (k)+tr{V~ek+1)C(k+l)h(k)K(k+l)1

x'Kk)(k-~'(k+l)K(k+l)fc (k)+tr{(A(k)-E(k+1))E(k,+l)1 (5.3.lL10

Combining (5.3.9) and (5.3.14) we have

E{R'W(k)fc(k)4-t '(k)M(k)u (k)+C(k+1,ic (k+1)IF(k,U(O,k-l))}-C(k,:R) =0

(5.3.15)

Since u (k is F(U(O,k-1),k)-measurable, we have fram (5.3.13), (5.3.5),

(5.3.6):

E{i'W(k).-Z+u0'(k)i(k)u0(k)IF(k,U(0,k-1))} = 'K(k)k--A(k)(k+l)A(k):R

+LA' (k)KE(k+1)B(k-) (M(k)+B' (k-)K(k+1)B(k)) 1B' (k)K(k+1)Ak)+ 0 ()(ku (k)

F! R 'K(k)R-R (k+1)K(k+l):R0(k+1)+u0 ' (k) (M(k)+B' (k)K(k+l)B(k)L0 (k)

+u (k) (M(k)+B' (k)K(k+1)B(k))u (k)+u*t ('k) (M(k)+B' (k)K(kc+1)B(k')u0 (k)

= xK(k)R-R (k+1)K(k+1)-0 (k+l)+(u (k)-u (k))"''(k)+B'(k)K(k+1)B(k))(u (k)

-u *(k))+tr{A'k)- Z(k+1)K(k+l)} .(5.3.16)

Combining (5.3.9), (5.3.16) and (5.3.15) we have since M(k) > 0 and

K(k+1) 0:
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0 =E{.VW(k)-!+u*' (k),M(k)u (k)+C(k+1,R .(k+I) IF(k,tj(0,k-l)) }-C(k,.-)

< E{%-'W(k)_+u ° ' (k)II(k)_u(k)+C(k+l, _°(k+l)IF(k,U(0,k-1))}-C(k,R).

(5.3.17)

The lemma follows from the Optimality Criterion.

Theorem 5.3.2: The control law u (k), k = 0, 1, ... , N given by (5.3.5)

and (5.3.6) is the optimal control Law which minimizes the cost (5.3.1)

subject to (5.2.1) and (5.2.4). The optimal cost to go can be expressed

as:

N-i

J,(k,R) = V'K(k)R + tr [(A(i) - _(i+l))K(i+l) + W(i)E(i)] + F E(N)

i=k (5.3.18)

This follows trivially from lemma 5.3.1 and equation (5.3.2).

Note that E(k), (k), K(k), k = 0, 1, ..., N can all be precomputed

when the noises distribution laws and the weightings (F, W(k), 11(k)) are

all given. The performance measure can be easily evaluated when the con-

ditional mean of the state vector is computed via a minimal order optimum

observer-estimator. From (5.2.27) and (5.3.5), we see that the optimal

control law can be written as

*,1
u (k) = -(M(k) + B''(k)K(k+l)B(k)) B'(k)K(k+l)A(k)P(k)z(k)

-(M(k) + B'(k)K(k+l)B(k))-B'(k)K(k+l)A(k)V*(k)yx(k) (5.3.19)

Denote the pure feedback portion of u (k) by

Ul(k) = -(M(k) + B'(k)K(k+l)B(k))-1B' (k)K(k+l)A(k)V (k)(k) (5.3.20)

and feedback after compensation

* B
u2(k) = -I(k) + B'(k)K(k+l)B(k))-B'(k)K(k+l)A(k)P(k)z(k) (5.3.21)
-2-- - -- - - - -
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The optimal control is composed of:

u*(k) .u1(k) + u2 (k) (5,3.19')

The detail structure of the optimal control system is described in Figure

5.1.

When the observation noise is nondegenerate, i.e., Q(k) >

k = 0, 1, ..., we have the usual separation results first derived by

Joseph and Tou. Theorem 5.3.2 indicates that separation is true under

more general assumptions when q(k) and R(k) are nonnegative definite and

even when they are both zero matrices. The theorem can also be applied

to the case when the observation noise is sequentially correlated. In the

following, we shall treat this special case in some detail.

Consider the system 92 described by

x(k 1 1) = A(k)x(k) + B(k)u(k) + (k)

8 2 :(5.3.22)

y(k) C(k)x(l-) + n(k)

{n(k) } 0 is sequentially correlated and is described by

n(k + 1) = A(k)_n(k) + .i(k) (5.3.23)

We shall assume that k), 1(k), k = 0, 1, ..., x(0) and n(0) are inde-

pendent Gaussian random vectors with statistical laws given by (3.3.2),

(3.3.3) and (3.7.14). The control problem is to find control u (k) of

the form (5.2.4) which will minimize the cost (5.3.1) subject to (5,3.22",

-J (5.3.23). From (5.3.22) and (5.3.23) we have the augmented system_-I
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x (k ) (k)' (k) ' (k)u(k) + '( )

(5.3.24)

where

- (kL.) (5.3.2,5)

(k) =_(k)

The cost (5.3.1) can be written as

k-O

;,.+here

F (k) = . (5.3.27)

T -ie aug-ented control problem is to find _ukof the form (5.2.4)

such that the augmented cost (5.3.26) is minimized subject to the aug-

mented sysen (5.3.25) and constraint (5.2.4). We note that the solu-

tion for the augmented control problem is the same as that of the original

ontrol problem.

Apply theorem 5.2.3 to the augmented control problem, we have

a a B a,  a-B, a a -
(k) = - (M(k) + (k (k) a(kik) (5.3.28)

i--

I I __
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KW(k) = A k(K(k+l)-Ka(k+l)Ba(k) (M(k)+B a (k)K(k+l)B(k))-I a' (k)

Ka(k+1)Aa (k)+.,a (k) ; K a(N = F (5.3.29)

and a (kik) is given by:

z(k+l) = T(k+!)A a(k)P(k)z(k) + T(k+1)A a(k)V(k)y(k) + aT(k+)B (k)u (k)

aT: a a

.a(kik) P(k)z(k) + V (k)v(k) ; z(0) = T(O)x

(5.3.30

L(0) {C(O).Z C'(O) + n(5.3.31)

7a (k + 1) -a (k) -(k + I)Ca (k + 1)a (k) (5.3.32)

a a -a (kAa (za
-. (k) = a(k) k) + Ra(k) ; :(k + 1) 1j. (._(k)) (5.3.33)

Lemma 5.3.3: The solution of (5.3.29) is given by

K (k) = . . (5.3.34)

with K(k) given by (5.3.6).

Proof: 'Ve shall use the induction method. At k N, (5.3.27), (5.3.6),

and (5.3.29) give

F 0 K(N) 0
Ka(N) ... ... (5.3.35)

0~ 0
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Assume that the statement is true at k 4- 1, we have from (5.3.25),

(5.3.27), and (5.3.29) thac

"A(k)_(K(k+l)-K(k+l)B_(k) ((k)+B (k)K(k+!)B(k)) -B ' (k)K(k+l))A(k)+W(k)
K'(k) = -. 21

00

.. .. ~ (5.3.36)

and so the lemma follows.

Theorem 5.3.4: Tb- control law,

uW(k) = -(M'(k) + B'(k)K(k+l)B(k))-1 B'(k)K(k+!)A(k)_R(klk) (5.3.37)

with K(k) given by (5.3.6) and

(kik) = [I " _ma(k1k) (5.3.38)
-n *-nm -

is the optimal control law which minimizes the cost (5.3.1) subject to

(5.3.22), (5.3.23), and (5.2.4). The optimal cost to go is

N-1
(.a (,)a a,, a aa(,

J,(k,-) = _'I'(k) R+tr L[(L (i)-L (i+l))K (i+l))+ Z ((i) )+F E (N)

i=k (5.3.39)

This follows easily from theorem 5.3.2, lemma 5.3.3, and equation (5.3.28).

a nn+m
Note that x (k) . Rn, and so z(k) s R (see chapter 3). The detail

sLructure of optimal control system is described in detail in Figure 5.2.

5.4 Estimation with Feedback for Continuous Linear Systems

Consider a continuous linear system a described by:

i

____________________________________________
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k(t) =A(t)x~t) + B(t)u(t) + --(t)

a C~ c 2 t x t (5.4.1)

3m

where x (t) c u u(t) c R E k't) F: R, n (t) C R Yft) R.Weas e

that x(t t, { r) t } _, {n(t), t 2: t } are independent statistics.
0 0 0

x2(to ) '(x O,Z ) and (t, rI(t), t -' t are white Gaussian noises with

properties (4.3.2). The control u(t) is feedback in nature.

Let us denote U[O,t) = {u(r):T C [O,01}, and

Y UO~t [Ot]= {yUjOL)(T):T F. [O,t]jI. The observation statistic at tize

t is , (t) ( the subscript is to indicate that the statistic is de-

pendentL on the past control va'L!es'X The accumulative observation statistic

at time t is Y tt[O~t]. We shall assume that the control at time t is

a function of accumulative obseievation, statistic:

u(t) = (tY U[0o) fOt) (5.4.2)

Denote F(t,U[O,t)) =F(Y [t~Ot]). The control u(t) is a random vector

which is F(t,U[Q,t))-measurable.

Let f(s) be continuous on [o,tI with values in R., define the exten-

sion of f(s) by

(f)(s), (5.4.3)K f(t) t <s : T

'I f thus defined is in C [0,T], the class of continuous function defined
t- m

on [Q,TI with values in Rm. The control. (5.4.2) can be expressed as
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u~)=:t-YU0)[,) (5.4.4)

where ,)is viewed as a n-apping fro= R C [O1,T] Rr The control

(5.4.4) is also F(t,U[O,t)) -easuraole. We assune that C'(t,-) satisfies

a Lipschitz condition:

9!; f, eC 0,T)~ (5.4.5)

for all t ;-(0,T], where a~ is so~e constant. Sonetimes we shall subpress

the depen 'ance on past control value, and write (5.4.4) as

without causing confusion.

Theorem 5.4.1: let C2()~);t 0, anid the control is of zhe feedback

foxro (5.4.6). The conditional distribution of the current state of Scis

Gaussian random vector, and is vara~eterized by the conditional mean,

xtt), and cenG -tonal covariance, 7(t), which are given by:

3c * : Iktt) = _ t) _ t _ -, . _) (t)C, t)P(t))z(t)+T(t)L* ()Z(0)

+ (T(t ) A(t) V (t )+T Ct)% V( t) -T C _

+t)Bt"U(t)

z(t*) = T(t )x -T(t )V (to)z(to)
0 -o - o~ o-2 0 2

(5.4.7)
k(t 0 = (O P~(t)+V (t)Y-2Ct)

=(t (AC)-R~t)C' (0-~d( (t)+Tt) (A~t)-R~C)'( 0 (t)
_ - () -2C(t) --2 - -7- _ ()L( 2 ()

-2 2 - 1

(t) Z -Z C'(t )( CC(t ) (r')t 1C (t )z ; t) C2 (t)R(t)C'(t)

(5.4.8)
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where Y2 (t), .L(t) are given by

,q (o.qtojz..c,(to) 1  t t t°
_2Yt) =(5.-.9

(IWCJCqt) + -R2t)_(t)), ; t - 0

* -1
(t) = _t)C(t) ( , t > t (5.4.10)

and P(t), T(t) are given by

Tt)1 9 (t) = 0 ; C 2 (t)P(t) = 0 - T~t)P(t) = I t > t

- -nm2  -2- - 2  0

(5.4.11)

Proof: Let us break 2(t) into

x(t) = l(t) + x2 (t) (5.4.12)

and Xl(t)t x2(t) are given by

Xl(t) = A(t)xl(t) + B(tu(t) ; xl(t o ) = 0 (5.4.13)

x2 (t) = A(t)x2 (t) + (t) 2(to) x(to) (5.4.14)

u(t) is of the form (5.4.6) and is F(t,U[0,t))-measurable; therefore x (t)

is F(t,U[0,t))-measurable. From (5.4.12), we deduce

_R(tlt) = x (t) + E{x2 (t)IF(t,U[0,t)} (5.4.15)

Let us define

Y-1 = C(t)xl(t) ; -2 (t) = Yz(t) - 1 (t) = C(t)x 2 (t) + (5.4.16)
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Let F (t> Fv(, [Ot)). Since , x(s)}ts=O are F(t,U[O,t))-

measurable, then tv (s)} is F(t,tU[0,t))-measurable and so

F2(t) C F(t,u[O,t)) (5.4.17)

Fronm (5.4.16) and (5.4.13), we have

j(t) = Y2(t) + C(t) _ A(t, )B(t)u(t)dt (5.4.18)

0

where u(z) is of the form (5.4.6). Equation (5.4.18) is an integral equa-

tion. By the Lipschitz assumption, equation (5.4.18) can be solved by

successive approximations to yield a unique y Cm [0,T].[6] Setting

y ( ) (t) Z 0 and

I (t) y2(t)+C(t ) 
t  d-,

t [0,T] ; ' = 1, 2, ... (5.4.19)

inductively, ) is F 2 (t)-measur.ble for v = 1, 2, ... ; and so

-y(s)}= lim Y)(s)s= is also F (t)-measurable, and

F 9 (t) 3 F(t,U[0,t)) (5.4.20)

Combining (5.4.17) and (5.4.20), we have

F 2 (t) = F(t,U(0,t)) (5.4.21)

Equation (5.4.15) becomes

*(tit) = (t) E{x 2 (t)F(t) (5.4.22)

Now consider the systems:
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_.,(t) = A(t)xl(t) + B(t)u(t) ; X (to) 0 0
c (5.4.23)

l(t) = C(t2xl(t)

(t) = A(t)x 2 (t) + (t) x(t) ", c(X,Z)
aC (5.4.24)

2(t)x(t) + n.(t 1

-2 (t)x2 (t)

Apply observers theory to the deterministic system &i and stochastic

c (see chapter 4, sections 4.2, 4.3) In this manner we prove

the theorem easily. For detail procedures the reader is referred to theorem

5.2.1, .here we have proved the discrete analog in great details.

5.5 Stochastic Control of Continuous Linear Systems with Quadratic Criteria

We consider the problem of controlling the continuous linear system 3
.3

with quadratic criteria

SC(u) Eix' (T)_F x(T) + x'(t)W(t)x(t) + u'(t)M(t)u(t)d4 (5.5.1)

t

with F 0 O, W(t) Z 0 and M(t) > 0. We are to find a control of the form

(5.4.4) and (5.4.5) such that (5.5.1) is minimized subject to (5.4.1).

For any control of the form (5.4.4) and (5.4.5) we have from lemma

2.2.6 that

ft

F(t,U[0,t)) }d4

!I

t I . .... .. .... ... .. ._ _
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=E1x-'(T!T)F --(T'T)+. _ (t't)W(t)x(t~t)+u'(t)M1(t)u(t)dt~

+rIF (T!T)+; W(t)L(t)dt1 (5.5.2)

where E(t), t ~t is given by (5.4.8). We note from (5.4.8) that Z(t)

is independent of the control function; thus to minimize (5.5.1) is equiva-

lent to minimizing

1.() =Ej'(T IT) F -R (TIT)i-+ '(tjt)W(t)*(t't)+u'(t)M\(t)u(t)dtI (5.5.3)

t0

From (5.4.7), we can easily derive the differential equation for %"(tit):

+L (t) n(t)+B (t) u(t) (5.5.4)

with g,,(t) = C,(t) + C (t)A(t), and x(t), t to, is a diffusion process

4given by (5.L. 1) . We have now a stochastic control problemn: Find a control

law of the formo (5.4.4) and (5.4.5), such that the cost (5.5.3) is minimized

£ subject to the constraints (5.5.4), (5.4.1.)-.

Lerma 5.5.1: The control law

_l (t) = M1(t)B' (t)K(t)J*(t t) (5.5.5)

-k(t) =A' (t)K(t)+K(t)A(t)-K(t)B(t)M- (t)13'(1)K(L)+W1t) L (T) F

is the optimal law for the above stochastic control problem, i.e., if

u 0 Wt is a control of the form (5.4.4) and (5.4.5), then
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The optimal cost-to-go S

J*(,) Ejx5'(TIT)F x-(TIT)+, * (jrWt) <+'-)R~ ~d

k Wt) R1

R ' K(t)* +tr Q (r)

_Q() (5.5.8)

Proof: As in the discrete analog, we shall make use of the Optimality

[ Criterion (theorem 2.4.4) to prove the lemma. Let us define for all[ ~ ~(t,*R) c [0,T] inR: *

(5.5.9)

where K(t) satisfies (5.5.6). From (5.5.6) and (5.5.9), we have

C(T,R) R= R (5.5.10)

let U(O,t) be an arbitrary control function and denote

R = E~x(t)IF(t,U[O,t))} = R(tit) .(5.5.11)

Let u (t) be given by (5.5.5) with *R(tlt) replaced by R. Denote the dif-

ferential generator of R(tjt) by £, u) we have from (5.5.4), (5.5.5),[ (5.5.6):

EM *(~,k):'~)k,*'(),~ *tI~,UOt

I = tr (O~tC (t)R(t)C'(t)V' (t)+L (t)_q(t).l(t)K(t) }+2*'A' '(t)K(t)R+

L - C2)B (t)(t)C'(t)R2 t+L 1() t)(t) t)(t) t)- W~) (..2I=tr{(V *WC) R(tC() * _t-I _-kktx (-.2

-2 - 2 2 _i)_~)



Combining (5.5.9) and (5.5.12) we have

C (t,±)+E-Su(C(r,.) "2_.).+u (ti(r)u(rYF(ti1[Ot)) 0 (5.5.13)
t - U_ _

Let R(t) be any F(rL[O,t))-=easurabIe function, we have fro= (5.5.4),

(5.5.5) and (5.5.6)

0J o

U _

).K(t)'- ."

= r+(° (t) ()) -C(t)V(°(t)-.u+ (t))(0 . (5.5.14)

Since M(t) 0, (5.5.13) and (5.5.14) imply

0 = C (t,)+E-u(C(t,:))+.'W(r)x+- (t):tOu(t) Ft,1[Ot}-

C t ) +E; :£ O( o :))+-"f():+

% C-( -  . . . . . . '( )..(t)u (r) F(t,U[O,:)). (5.5.15)

The lema fellows fro=z (5.5.10), (5.5.15), (5.5.9) and the Optim.ality

Criterion (theorem 2.4.4).

From lerma 5.5.1 and equation (5.5.2), we have easily the following:

Theorem 5.5.2: The control law u t) given by (5.'.5) and (5.5.6) is the

optimal, control law which minimizes the cost (5.5.1) subject to the con-

straints (5.4.1), (5.4.4) and (5.4.5). The optimal cos-r-to-go can be ex-

pressed as

J*(t,x) ='K(tlOk+tr F Z(T)+ [ )Z +V (R (-V
"t

V 0

+L1 (:)Q(t)L1 (T)K(z)]d (5.3.16)
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Ohere I(-), V2(-), LI(-) are given by (5.4.8) to (5.4.10), and K(t) is

given by (5.5.6).

The structure of the optimal control system for -3 is described in

Figure 5.3, where we have decomposed the control law into

* * + *(5.5.17)
u (t) = ul(t) +u 2 (t)

Ul(t) is the pure feedback from the noise-free observation:

Ul(t) = -M (t)B'(r)K(t)V,(t)vx(t) (5.5.18)

and u,(t) is a feedback after compensaticn:

R7(0 = -'- -(t)B' (t)K(t)P(t)z(t) (5.5.19)

In the special case when C 9 (t) = 0, i.e., all observation is noisy, we

have the usual separation results due to Wonham [27].

The general results can be applied to the case where we have time-

correlated observation noise.

Consider the system 3 described by (4.5.52), the statistical law of

underlying certainties are given by (4.5.53) and (4.5.34). From these
c

assumptions we can form the augmented system g given by (4.5.55)-
ta

(4.5.57). Let us define

a FW~t) 01 [F 0]
a(t) ... . .. . ; F " (5.4.20)

[0 0o 0 0.

We form the augmented cost

c a ~T a, a
(u)= E{xa (T)F a xa (T)+ x' (t)W(W)Xa( t )+1 ' (t)N(t)u(t)"tf . (5.4.21)

-tp o
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The augmented control problem is to find a control of the form (5.4.4),

(5.4.5) which wil! minimize (5.4.21) subject to the constraint (4.3.53).

Note that the solution for the augmented control problem is the sane solu-

tion for the original control proble, where we are to find control of

form (5.4.4), (5.4.5) so as to minimize (5.5.1) subject to the dynamical

system

Apply theorem 5.5.2 to the augmented control problem, we have the

optimal control law given by

* -1 a.. a..a

t) = - (t)B (tK (t)x ttt) (5.4.22)

_R , a a a a a -1 a a a
-Ka(t) - Aa ' (t)K (t)+K (r)A (t)-K (t)B (t)M (t)Ba' (t)K (t)+W (t)

a(T) = F (5.4.23)

aa
and R (t't) the conditional mean of Ra(t), and is generated via a minimal

order optimum observer-estimator (see theorem 5.4.1).

Lemma 5.5.3: The solution of (5.4.23) is

Ka Kt)
K = . ] (5.4.24)

with K(t) satisfying (5.5.6).

Proof: Partition K a (t) into

Ka (t) = . ... (5.4.25)

K2 1 (t) 22 (t)

(5.4.23) gives:
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-_K1() = A' (t)K 1 1 (t)+K (t)A(c)-K (t)_B(r)M (t)B' (t)K 1 1 (t)+W(t)

- -711 1 - - -11

Kl ( T) = F

(5.4.26) ;()=-51(t ) = A'(t)K12(t)+K12(t) A(t)-K, t)B(t)-M (t)B' (t)K 1 2(t)

KI(T) = 0

(t ) = ._(t)12 2 (t)+_2 2 (t).(t)-K 2 1 (t)_(t)M (t)B(t)K12(t)

K22(T) =0

-K2 (C) = -K'2(t

Comparing with (5.5.6), we see that

Kll(t) = K(t) (5.4.27)

From the second equation of (5.4.26), we deduce

K12(t) = 0 
(5.4.28)

substituting (5.4.28) into the third equation of (5.4.26) and then we have

(t) 0 (5.4.29)

Combining (5.4.25) to (5.4.28), we have (5.4.24).

Using lemma 5.5.3, theorem 5.5.2 and equation (5.4.22), we have the

results:

Theorem 5.5.4: The control law

u (t) = -A (t)B'(t)K(t) _ (t t) (5.4.30)

with K(t) satisfying (5.5.6) and
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= Oa(~)= E~~)F(t,U [O,tI): (..1
k(t~t) [I" O]_a(tlt) Ef2E)''" ' (5.4.31)

is the optimal control law of the form (5.4.4), (5.4.5) which minimizes

(5.5.1) subject to the dynamical constraints 93' (4.5.28). (See Fig. 5.4.)

5.6 General Discussions

In this chapter, we considered the problem of controlling a linear

system with quadratic criteria under the assumptions that

1) System dynamics are known,

2) Statistical laws of underlying uncertainties are known.

It has been shoan th-.tt under fairly general assumptions on the noise

structures, the optimal control strategy can be split into two distinct

procedures:

1) Find the conditional mean esLimates of the current state

2) optimally feedback as i.f the conditional mean estimate

of the current state is the true state of the system.

This result is generally referred to as Separation Theorem 3 2 ] or Certainty-

equivalence principle. [4 31  Theorem 5.3.2 includes as special case the re-

[ uncke an rak 271
sults obtained by Joseph and Tou, Gunckel and Franklin; and theorem

5.5.1 generalized that of Wonham's.[27] In the following, we shall discuss

some further extensions of the research related to this chapter.

(A) Different Cost Criteria

In this chapter, we have considered exclusively quadratic criteria.

The first reason for doing this is motivated by the perturbation guidance

approach to many guidance control problem, 1431 where we try to keep a

stochastic system on a precomputed nominal trajectory. Such an approach

will naturally lead to the problem of controlling a time-varying linear
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system w~ch quadratic criteria. There is also the reason that control

with quadratic criteria is one special case where we can derive explicit

results,

[591The approach taken in this chapter follows that of Streibel in

the discrete case, and that of Wonham 3 2 ] in the continuous version.

Theoretically, we can easily extend sections 5.3 and 5.5 to more general

situations where the cost criteria is not necessary quadratic. The main

difficulty that we shall f.cE is the exist:ence problem, which is a mathe-

matical rather than conceptual issue. In general, we shall have to formu-

late and solve a ncw stochastic control problem where the process being

controlled is the "estimated" process R(t't), rather than the process x(t).

The interested readers are referred to Streibel [5 9 and Wonham [3 2) for de-

tail discussions.

(B) Terminal Time N - c(T co)

In the discrete case, let us define K(k,N;F) as:

K(k,N;F) = A'(k)(K(k4-l,N; F)-K(k+l,N;F)B(k)( (k)+B'(k)K(k+l,N;F)B(k))-i.

B'(k)K(k+!,N;F)A(k)+W(k) ; K(N,N;F) = . (5.6.1)

From the separation results, the overall control system can be studied

separately by first considering the minimal order optimum observer-

estimator, and then the feedback control. In the case when N - , the

error covariance will remain bounded if and only if the system 8 2 is de-

tectable (see chapter 3). Thus detectability is necessary in order we

can reasonably talk about controlling the system during an infinite time

span. Next, we have to consider under what appropriate conditions the
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feedback gain will remain bounded. We note that this is equivalent to

consider under what assumptions will K(k,N;F) remain bounded as N

Comparing (5.6.1) with (2.5.15) where we replace

A(N-k+k ) A'(k)

0 (k)

L4(N-k+k) - (k)

(5.6.2)

M(N-k+k o ) - R(k)
0

B(N-k+k ) - A'(k)D'(k)
O~0

K(N-k+ko.N;f) - P(k,k ;F)

We can view K(k,N;F) as the minimal sequence with respect to a certain

solution set. This allows us to consider the asymptotic behavior of

K(k,N;F) as N . From section 1-.6, we see that a necessary and suf-

ficient condition for lim K(k,N;F) to remain bcunded and satisfy a steady-

state difference equation is that there exists some matrix G(k),

k = -1, 0, 1, such that

-. i-j ;

-A(I 2ie (5.6.3)

where

A(k) = A(k)-B(k)G(k) ; o 1_A(J) = A(i)A(i-l)... A(j) (5.6.4)

Note that (5.6.3) and (5.6.4) are equivalent to saying that there exists

G(k) such that if we use the control
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u(k) -G(k)x(k) (3.6.5)

The resulting system

x(k + 1) (A(k) - B(k)G(k))x(k) + E(k) (5.6.6)

is uniformly asymptotically stable. We shall call such a system

stabilizable. Thus detectability and stabilizability are necessary and

sufficient conditions which allow us to consider control of discrete

linear system over an infinite time span.

In the continuous time case, let us define K(t,T;F) as the solution

of

-.K(t,T;F) = A' (t)K_(t,T;F)+K(t,T;F_)A(t)-K(t,T;F)B(t)M-I(t)B' (t)

K(t,T;F)+W(t) ; K(t,T;F) = F (5.6.7)

In order that we can consider the problem of controlling the continuous

linear system S during an infinite time span, first we have to require

that the error covariance will remain bounded as T . A sufficient con-
c

dition for this is detectability of the system g3" Next, we have to con-

sider the asymptotic behavior of K(t,T;F) as T - . Comparing (5.6.7)

with (4.3.29) where we replace

A' (-t) - A(t)

0 - C (t)
-2

B' (-t) - C(t)
1 (5.6.8)

-0 Q(t)

W (-t) R(t)

K(-t,T;F) - X (t)

__ _

I
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We have from theorem 4.4.4 that urn K(t,T;F) will remain bounded if and

only if there exists a G(t) such that (A~t) -B(t)G(t)) is exponentially

stable. This is equivalent to the condition that there exists a feedback

control

u(C) =-G(t).X(t) (5.6.9)

such that the resulting system

k(t) (A~t) - B(t)G(t))x(t) + ,-(t) (5.6.10)

will be uniformly asymptotically stable. We shall call such a system

stabilizable. Therefore, in the Continuous case, detectability and

stabilizability are sufficient conditions which allow us to consider con-

trol of continuous linear system over an infinite time span.

With the assumptions on detectability and stabilizability, the asymp-

totiL optimal cost rate is (see (5.3.18))

1i J.(k% li 1 trYNL(i) - (i+l)K(i+1) + W(i): (i))

i=k
(5.6.11)

in the discrete case, and (see (5.4.16))

lini 1 ci = - tr [() i. (')C()R)')V()K
ST-t~ - T T-t - - -2 --2

+L~tq~t) ' ()K~i ]d~ (5.6.12)

in the continuous case. We note that the asymptotic optimal cost rate is

independent of k.

In the time invariant case, detectability and stabilizability imply

(see chapters 3 and 4)
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1) We have a time invarian% minimal order, optimum observer-

estimator which generates the conditional mean estimate

of the current state.

2) Wa have a constant feedback gain.

Therefore, the optimum control system is also time invariant whereone

can write transfer functions for it.

The study on the stochastic stability is a topic for further research.

5.7 Perspective

The Separation Theorem, or certainty-equivalence principle, was

(561stated for discrete linear systems by Joseph and Tou, Gunckel and

Franklin,(581 Streibel, [591 and for continuous linear sy3tems by

[22,[2r71
Wonham.[ 2 '[2 7  The assumption was that the observation noise is non-

degenerate white Gaussian process.

The consideration in [56], [58], and [27] is that of quadratic

criteria and the approach is straightforward application of the Optimality

Criterion. The investigations by Streibel [59' and Wonham [22 include more

general cost criteria; the approach taken is that of first finding an

equation for the conditional mean of 'he current state, and then formulate

a new optimal control problem where the process being controlled is the

conditional mean process; finally, appeal to Optimality Criterion.

The approach taken in this chapter is that of Wonham's. The cost

criteria we considered is quadratic, but one can easily extend the results

to more general cost criteria. The assumption that the observation noise

is a nondecne rate white Gaussian process was relaxed. It was proved

that Separation holds when the observation noise is one of the

w i following:

1) regular white Gaussian process-
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22) degenerate white Gaussian process

3) totally singular situation (i.e., noise-free observation)

4) colored noise (i.e., sequentially correlated or time-

correlated)

5) summation of colored and white Gaussian noise.

I

'9



CHA?-TER VI

CONTROL OF DISCRETE TIME LINEAR SYSTEM"IS WITH

UNKFOWN GAIN PAPLAMETERS

6.1 Introduction

We have considered the control of linear systems with unknown dynazics

in the last chapter. :ow we shall relax some of the assumptions that all

dynamics are known. In many practical control problems, we are confronted

with the problem cf controlling an unknown linear system. *-e may have a

crude idea about the dimension of the system but the zero and pole loca-

tions may not be fully known. In this chapter we shall consider linear

systems whose voles are known but hose zeroes are unknown. We shall

generalize this to the case of a dynamical system in which the goin vector

is unknown. Admittedly, the situation in which we are to control a linear

system with unknown gain is rare; however, this research effort is neces-

sary and of importance in guiding our way to the problems of controlling

an unknown linear dynamical system.

The structure of this chapter is as follows. In section 6.2, we

clearly state the problem under investigation. In section 6.3 we formu-

late the control problem and state the solition . The approach taken is

that of Open-Loop Feedback Optimal (O.L.F.C.) control (see s%!ction 6.2).

Using the Discrete Matrix Minimum Principle, we derive the O.L.F.O. con-

trol sequence in section 6.4. The rxistence and uniqueness of O.L.F.O.

control is studied in detail in section 6.5, and the asnmptotic conver-

gence properties of the ove,.all system in sectifn 6.6. Section 6.7 is

devoted to the discus.sion of approaches and of the results. Detailed

references are given in section 6.8.

: -179-
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Theoretical results derived in this chapter will be applied to the

control of third order linear systems with unknown gain. The computer

simulation resilts and discussions will be treated in tne next chapt-er.

6.2 Problem Statement

Let us consider the discrete linear system

E(k + 1) = Af~k)x(k) + b(k)u(k) + F(k)
(6.2.1)

v(k) C(k)xfk) + n.(k)

where --k. (k) £R7, n~) (k) £R7, A(k) is a k:nown nxn matrix, C(k)

is a known mzn atrix, and u~k) is a scalar control. We assume that the

gcain" vector Ib(k) is unknouin, but we know that it satisfies the difference

equation

b(k + 1) =G(k)b(k) + yj(k) (6.2.2)

where G(k) is a known nxn matrix and Y(k) c Rn. It is assumed that the

vectors 1z(O), b(O), (),-'(k), -f(k); k = 0, 1, ... ' are independent

Gaussian random vectors with known statistical laws:

x(0) %. Q(x 'z(6.2.3)

.-o -ho

-(k) -- Q(0,Rj(k))(6 . )

L y(k) G(0,0(k)) (6.276)

-(6.2.7

Wit k ,0() 0 () 0
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Our objective is to find a control sequence :u(0), ... , u(N - 1).

such chat the cost

N-I

Ju M - Ele' (N)F x(N) + fx' (k)W(k)(k) + h(k)u 2 (k)l

k=O

is minimized subject to (6.2.1) and (6.2.2). The expectation is taken

over all underlying random quantities. We shall assume that F, and W(k)

are nonnegative definite symmetric matrices, and that h(k) is a positive

scalar for each k.

Depending on the kinds of admissible controls that we are allowed to

choose, different formulations of the stochastic optimization problem are

possible. in the most general setting, we may assume that the control is

a random function of the observed data, i.e., u(k) = L(u!F(U(O,k - l),k)

is a conditional probability measure on the control space. If the condi-

tional probability measure is regular, then the control is said to be a

mixed control law. If the conditional probability measure is singular

(Radon measure), then the control is said to be a pure. control law. Un-

fortunatcly, little can be done at this level of generality where we con-

sider both mixed and pure control laws.

in the next level of generality, we may confine ourselves to consider

only pure control laws to b3 admissible, i.e., the control at each instant

is a fixed function of the observed data; in this case, the resulting con-

trol will be a random variable through its dependence on the random ob-

served data. This type restriction of admissible control leads to Bellman's

equation [25j whose solution may only be approximated.

Finally, we may restrict ourselves to consider only deterministic open

loop controls to be admissible; this essentially means that we ignore the
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zero--mean random vectors and assume that the system will behave according

to its average behavior. Of course, this may not lead to a good control

system, especially whenever the covariances of the disturbances are la:ge.

To compensate for this, we shall recompute the open-loop optimal dete:-

ministic control after reevaluating the state uncertainty of the system

at each and every step (time). A control sequence which is optimal in

this manner will be called the open-loop feedback optimal (O.L.F.O.)

control. 2 '' 6 3 j Another interpretation of O.L.F.O. control is the

following. Assume that we are to control a system without knowing whether

any further observations will be available, or if available, we do not

know exactly when the data will be observed. Under this situation the

principle of optimality is difficult to apply. One logical, and in some

sense optimal approach, is to design an optimal control strategy based on

the total information available up to the present time, and continue to

use this strategy until new information becomes available ; then we

change our control strategy accordingly.

In this chapter, we shall look for the O.L.F.O. control. We shall

see that such a control sequence is, in some sense, "adaptive" in nature.

6.3 Formulation of Control Problem and its Solution

The present time is indexed by k. Let us assume that the control

sequence U (0,k - 1) {u (0), u (1), ..., u (k - 1)} has been applied

to the system, and that the observation sequence

F YU (0k-.l)(0 k) { 0-(i) }  observed. We would like to find a

"future" control sequence U (k,N - 1) L {u(k), ... , u(N - 1)) so as to

minimize the future cost (cost to go) conditioned on the total available
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information at the present time. Let us denote the --algebra generated

by the observed data YU*(O,k-l)(Ok) as F(k,U (0,k - 1)); the symbol

U (O,k - 1) is used to denote that the data is really dependent on the

past control history. Our aim now is to find the contrcl sequence

['(kN - 1) such that the cost to go

N-1
J~~ ~ (U(,N1I 0,k1 L- El x' (N) F x(N+ x (j)W (j) x(j) F (k, U* (0,k-1))

j=k
N-i

+ h(j)u2 (j) (6.3.1)

j=k

is minimized subject to the constraints (6.2.1) and (6.2.2). The cost has

the simple form (6.3.1) because the future control sequence U(k,N - 1) is

assumed to be deterministic. (If the future controls were assumed to de-

pend .n observed data, we could not take the last term of (6.3.1) outside

the expectation operation.) It is now possible to formulate the pioblem

so that deterministic optimization techniques can be applied.

Let us define for j Z k,

_k(jlk,U°*(O,k-l)) = E{x(j)IF(k,U (O,k-l); (6.3.2)

S(jjk,U*(O,k-l)) A E{b(j)JF(k,U*(O,k-l))} (6.3.3)

e (jlk,U (O,k-l)) _ iR(j k,U (0,k-l)) - _x(j) (6.3.4)

.b(Jlk,U1(O,k-l)) _ (jjk,U"(O,k-)) - b(j) (6.3.5)

We note that Z(jlk,U*(O,k - 1)) is F(k,U (O,k - 1))-measurable if j > k,

so for j a k, we have

I
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Ex'(j)M x(j)!F(k,U (O,k-l))} = ifjlk,U (Ok-l))M\ ._(jlk,U*(Ok-)) +

m{e/ (j I k,u * (O,k-i))Me (jlk,U (O,k-l))jF(k,U *(O,k-l))1 (6.3.6)

where M is an arbitrary nxn matrix. If we define the state-error second-

moment matrix

Z (jlk,u*(Ok-1)) = E{e (jlk,U (O,k-l))e'(jlk,U (Ok-l))'F(k,U*(O,k-1))}
X 7 X

(6.3.7)

then using (6.3.6) and (6.3.7), the conditional cost (6.3.1) can be written

as follows

J(U(kN-l);U* (Ok-l),k) = '(Njk,U (O,k-l))F :k(N!k,U (O,k-l))
N-I

1 tr FE (Nlk,U*(O,k-I)) + -1 {R' (jlk,U*(O,k-1))W(j)x(j Ik,U*(O,k-l)) +

j=k

tr W(j)Z x(jlk,U*(O,k-l)) + h(j)u 2(j)} (6.3.8)

To complete the formulation, we shall have to derive dynamical equations

satisfied by _(jlk,U (O,k-l)) and X (jjk,U(Ok-l)).

Since all the noise sequences are assumed to be uncorrelated and

white, we have (see chapter 2, section 2.3)

E{i(j)!F(k,U '(O,k-l))} = 0 ; E{.j(j)jF(k,U '),k-l))} = 0 , j - k

(6.3.9)

The admissible contro± is assumed to be jeterministic; hence, (6.2.1),

(6.2.3) and (6.3.9) imply that, for j a k,

_(j+lIk,U (0,k-1)) = A(j)R(jlk,U*(O,k-l)) + I(jjk,U*(0,k-1))u(j)

(6.3.10)
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(j + llk,U (O,k - 1)) = G(j)b(jik,U (O,k - 1)) (6.3.11)

with initial condition (at the present time j = k)

(k k, U* (0, k-)) =E{(k)F(k, U* O,k-l))

(6.3.12)

b(kjk,U"(0,k-1)) E{b(k)jF(k,U*(O,k-l))}

From equations (6.3.2) to (6.3.5), (6.2.1), (6.2.2), (6.3.10), and (6.3.11),

we obtain the difference equation for the error vectors for j > k:

•. .. ....- ( 6 .3 .1 3 )b(J+l k,U (O-k-1)). 0 G(J) e eb (Jk,U* (O,k-1)). L(j)

The initial error at j = k only depends on { _(i), ,(i)}, i < k - 1, and

{n(i)}, i < k, and so it is independent of { (i), y(i)}, j Z k. Also,

since all noises are uncorrelated, zero mean, and white Gaussian, (6.2.6)

and (6.2.7) imply that

E{_(j)'(j)jF(k,U*(O,k-l))} = R(j)

(6.3.14)

E{y(j)j'(j)IF(k,U (O,k-1))} = N(j)

If we define the second-order moment matrix (for j k)

e (jjkU [(,k-l))k

L(jjkU~0,k-l)) El. [et(jkU*(0,k-l)):e(jlkU*(0,k-l))I
(j I k, U" (0,k-l)

", U*(O,k-l)) (
I F ,, (6.3.15)



-186-

Equations (6.3.13), (6.3.14) and the independence of initial error

(j = k) and of the future noise sequence irrply that _(jlk,U (O,k-1)),

j > k, is generated by (see chapter 2, section 2.3)

_L(j+IjkU (O,k-l)) = A(j,u(j)E_(jlk,U*(O,k-1))A'(j,u(j)) + R(j)

(6.3.16)

where

rA(j) uj4-_Rj
(j'umj) i__ ... R.j .. (6.3.17N

G(j) 0

The initial condition is given by

._' (k (0, k-) .e k kU *(, -)

Z(klk,U (O,k-1)) = E ... [e'(klk,U*(ok-1)):e(kjkU (Ok-1))]

D(k jk ,U * ( ,k - l ) ) _x O-=

IF(k,U*(0,k-l)) (6.3.18)

From (6.3.12) and (6.3.18), we see that x(klk,U (O,k-1)) and

b(kik,U (O,k-l)) are the conditional means of x(k) and b(k), respectively,

while Z(klk,U (O,k-l)) is the conditional covariance matrix of the aug-

mented vector

b(k)-

b (k)l

These quantities can be generated by the following identification equations,

(6.3.19)-(6.3.23), once the past control i (O,k-1) has been chosen:



b(i+lji+l', U (0, i))

L1+1~i: ~ = i~nY. iU~i ( (,))C(i +1)i0,u 1,ik)I

9(ili,U (0,i-1))J

L * L

wher - -~C(0)C(0) c'0)+(0) -1 (6.3.19)

C(i +1) L f(i -4 1) 0 1 ; i =0, 1, .. ,k -1 (6.3.20)
In

and V ('i+l i,U (0,i)), i 0, 1, .. ,k -1, is a solution of the following

equations:

1 0, 1, .. ,k -1 (6.?,2l)

1 0, 1, .. ,k - 1 (6.3.22)

E~illilU(Q,i)) = liu(0,i))-V*(i+ili,U _Oi)(~)~j, _Oi)

i =0, 1, .. ,k - 1 (6.3.23)
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C'(0)(C(0)1. C'(O)+Q (O)) - c(O) 0 

L0 X 0 X0 o
z(o1o'U"(o,-1 L_ Z(o1o) :.... .

Referring to chapter 3, section 3.3 we note that the identification

equations represent an optimum observer-estimator for the augmented

system:

S: A(i,u (i) +
Lb~il)J bi) Y(i)

. :(6.3.24)

v (i) + n(i)

L (i) 

If either Q(i) > 0, i = 0, 1, ..., k - 1, or C(i+l)R(i)C'(i+l) > 0,

i = 0, 1, ... , k - 1 (or both), the unique V (i+ili,U (0,i)) which

satisfies (6.3.21) to (6.3.23) is given by

V (i+lli,u (0,i)) = A(ijiU (0 ,i)) ' (i+l).

i = 0, 1, ..., k - 1 (6.3.25)

and the identification equations specify a Kalman filter for the aug-

mented system 9.

In all cases, where the driving and/or observation noises may be

degenerate, the conditional covariance, _(kk,(j (0,k-l)), given by (6.3.21)-

(6.3.23) is unique; and the conditional mean
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K(k k,U'(O,k-1)]

L(kjk,U (O,k-l)j

is unique almost surely. (see chapter 3). Thus, we may assume that these

quantities are known if U (O,k - 1) has been chosen. We can then formu-

late the following deterministic control pro~blem at the kth-step:

Open-Loop Control Problem (k j N - 1):

Given: R(j+ljk)' = A(j)x-(jjk), + b(jlk)u(j) (6.3.26)

.(j+ljk) = G(J)L(Jlk) (6.3.27)

Z(j+llk) = A(j,u(jD)Z(jjk)i'(j,u(j)) + R(j) (6.3.28)

with known initial conditions at j k

R(klk) = R(k~k,U (O,k-l)) ; b(kjk) (kjk,U*(O,k-l))

Z(klk) = (klk,U (O,k-1)) .(6.3.29)

We are to find a deterministic control sequence U(k,N - 1) such that it

minimizes

J(U(k,N-l) ;U*(Q,k-l),k) l.i'(NIk)F (NIk) + trjF L(NIk)j+

N-I

L,('(j jk)W(j). (j 1k) + trJW;(j)Z(j jk)j + h(j)u2 (j 4  (6.:3. 30)

j =k
sbetto the constraints (6.3.26) to (6128. where the matrices Fand

~()are defined by

Wc shall not explicitly stress the dependence on thle past control history
Uj*(O,k-l); for this reason the symbol U*(O,k-1) shall be dropped without
causing any confusion.

A4



Eor- the ;a:"e &eer-iis tic cantrol preo-ven, ue sball enzwte its opti=1ai con-

00

ewte onztii for One oe- co ~ntraI orobMe=; trhe r."ho MA(i~) is used

to indica2te tat 0:e cenrsel is oe-c, ri1condicioned on lte obser-

vation up to the present tim~e k-

1The solutiez for Chf. ahove eete~inistic opcLiza! control Przoblen is

* given belew; che d-etailed Z!erivaetion- will be carried out in section 6.44.

7The c:)tinl control sequence., t(k-).Is givenx by

u 0 ~ 0iL r~
2i j x (j ok1

-~~ ~ (jdIi-LIL.

(6.3.32)

where K(jk), j =k + 1,. .... .- 1, satisfies the matrix difference

equation

k(j k) = '(jk)ik(j+1lk)-K(j+1ik)60 (j'k){hi(jk)+S0 '(J ;k)k(j+1ltk)b0(j~k}1

b0'j )Kj+k)'tD(jfk)+b(jlk) K K(.14) 0[ o (6.3.33)

and for j k, .. N-1



[41) 06 .. 3.34)

A~ (i)gl W M

Q ~k) d~j -(j-1)h (jfk) d'(Q1) (6. 3. 33)

0 I b(jIjk)

o~nd) -oF (n+1

IA~-)SOj Z(j 'kG' (j)e

(I k)e,

h(jlk) h(j) + trf0(jjk)S(j+1)i . (6.3.37)

The matrices v 0(ilk), S(j + 1), j k, k + 1, ... , N -1, are given by
-=b

TO (j+1!k) G(i)4O(ilk)G'(J)+\(i) j =k, .. ,N -I ;

(6.3.38)

Z (k~k) Kkj-'*(,-)

Y~j) A,(j)S (j+1)AQ) + W(j) i k, .. ,N- 1 S(N) F

(6.3.39)

and the vector b0 (ilk) satisfies

The vectors e,2'..., e represent the natural basis in R-t2 n



=__ _ b=.k. - k_ =b(klk,'(O,k-I)).

(6.3.40)

To find the O.L.F.O. contcol sequence, we have t solve the above

open loip control proble= for k = 0, 1. The O.L.F.O. control

.u (k); . s then given byk=OD

u(k) = u 0 0,1. ..., -l (6.3.41)

"nere u"(kk) is given by (6.3.32) to (6.3.40). 1he structure of the

O.L.F.O. concrol syste- is described by Figure 6.1. Though 0he equations

are co=plicated, th-e digital co-pucer implementation of O.L F.O. control

sequence is actt;ay straightforward. A flow chart description of the

O.L.F.O. control is given in Figures 6.2 and 6.3. in the fIlc wing, we

shall outline the c==autational erocedure to find the O.L.F.O. control

sequence.

1. If k = 0, v(O) is observed, and R(O;0,U (0,-.),

b(0o0,U (0,-i), .(0J0,U (0,-]) are given by (6.3.19)

and (6.3.23). If k > 0, assume that U (0,k-i) is

chosen and YU*(O,kI) (Ok) is observed; compure

(kk,U*(0,k-l), b(klk,U*(O,k-1), and

Z(kjk,U (O,k-1)) using the identification equations

(6.3.19) to (6.3.23).

2. Compute O(jlk), b(jjk), b(jjk), h(jlk) for

j = k, k + 1, ..., N - 1 using equations (6.3.34)

to (6.3.40).

3. Compute K(k+lik) using (6,3.33), and the O.L.F.0.

control to be applied at step k is given by (6.3.41).
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4. Advance k - k 4- 1 and repeat I through 3 until

We note that the O.L.F.O. control sequence U (O,N - 1) is adaptive

in nature.

Before we go into the derivation of tVi O.L.F.O. control, let us

first look into the solutiorn carefully and discuss some of its implications.

In essence, we are forcing some sort of "separation" in our formula-

tion. The overall control problem is split into an identification and a

deterministic control problem. However, the effect of the identification

error will be taken into account in the deterministic contiol problem.

Thus, this does not correspond to pure separation as it is in the case of

stochastic control of linear system with known dynanics(chapter 5).

Let us first look into the identification equations (6.3.19)-(6.3.23).

Suppose that Q(k) > 0. If u(i) = 0, then from (6.3.21), we have

V (i+l i,U(Oi)) =... (6.3.42)

and so (5.3.19) implies

b(i+lli+l,U(0,i)) = G(i)L(ili,U(0,i-l)) (6.3.43)

Therefore, a nonzero input is necessary to identify the gain parameter

vector b(k). From the equation (6.2.1), we see that if i(i) is very large,

then for the most part the value of x(i 4- 1) will be due to b(k)u(k),

and so the observation y(k) will contain a large amount of information

about the gain parameter b(k). Therefore, we would expect that large input
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magnitudes will be helpful for the identification of b(k). For a ":ontrol
,N-i

sequence {u(k)= 0, if its total energy is high, we would expect such

control sequence to be useful for identification purpose. Buc large con-

trol energy will also give rise to a high cost (6.3.1). From the control

point of view, we would like to use just enough control energy to regu-

late the state of the system. In general, there is a conflict between

identification aud cuntrol, and a reasonable control sequence should

appropriately distribute its total energy to identify and/or control of

the system 9.

Let us ccnsider (6.3.32)-(6.3.33). Comparing with the Levis'
[751

results, we note that u°(jlk) is the optimal control for the problem of

controlling the system Sk:

(Jl ik
S: _x(j+llk) =  (j)_R(jlk) + ;_(jlk)u(jik) ; _(j+l,'k) ..

(j+lI k)

(6.3.44)

with the cost criteria

N-1

J = _'(Nlk)F (Nlk)+I 4 {(ilk)(ilk)R(i,1k)+h(jIk)u 2(jJk)+2_k'(ilk)d(i+l)u(i'k)}

ifk (6.3.45)

Therefore we can visualize h(jlk) as the modified relative weighting on

the control. From (6.3.3.), we note that h(jlk) relates in a direct

manner with E (jk). In a statistical sense, =(klk) reflects the level

of confidence we have about the estimate of b(k). The modification on the

relative weighting on the control is such that heavy weighting is put in

the control if we have little confidence on the estimate of b(k); therefore,
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the control action will be very cautious and control energy will not be

used unless it is very necessary.

Let us write

u (kik) = (h(kl'k)+b 0 (kIk)K(k,+llk)bo(klk)) 'Lbot(klk)k(k+llk)® P kk

(h(k~k) [... kjR.&1(klkk)d' (kjl) . (6.3.46

We shall call the row vector (lxn)

the O.L.F.O. adaptive gain, and the --erm(..7

u c(kk) = ..- (h kk)+b0'(klk)k(k+lik)b0 (klk)} l1bOI (klk)K,(k.+ljk) ® (kjk)

-n0

the corir.,crion term. Thus, the O.L.F.O. control, (6.3.46), becomes

u (kik) L (kjk)-0 (kjk) + ucL(klk) .(6.3.49)

From (6.3.33)-(6.3.37), we note that .1 (kjk,U (O,k-l)) affects indirectly

the O.L.F.O. adaptive gain and the correction term. The cross-error
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covariance, Z xb(k k,V (0,k-l)), only affects the correction term; and if

Zb (klk,U*(0,k-l)) is zero, then fxom (6.3.36) and (6.3.48) w,: conclude

Cu (Wk) = 0.

Assvne that (ifk,U (O,k-l)) = 0, then from (6.3.33)-(6.3.37), we

have inductively

rK(k) :01

R(k k) = .. . (6.3.50)

0 0]

where K(k) is given by (5.3.6), and from (6.3.47), the 0.L.F.0. adaptive

gain is

o(k) -(h(k) + b'(k)K k + I)b(k))b'(k)K(k + l)Ark) (6.3.51)

which is the truy optimum gain (see chapter 5, section 5.3). The assump-

tior that Z (k k,U*(O,k-l)) = 0 also implies _b(klk,U*(O,k-l)) 0, and

so the correction term is zero, and

u (klk) = -(h(k) + b'(k)K(k+l)b(k))-lh '(k)K(k+l)A(k)*_0(klk) (6.3.52)

Thus we see that if for some k, the identification of b(k) is assured to

be exact, i.e., the level of confidence on the estimated gain parameters

is very very high, then the O.L.F.O. control will act optimally and use

the obtained estimate of b(k) as if it were the true gain vector.

Finally, we would like to comment on the computational requirements

of the proposed scheme. The computation of the O.L.F.o. control is done

on-line. At each time unit k, we have to solve a one step 2n-vector dif-

ference equation and a one step 2n x 2n matrix difference equation,

I ' ............



(6.3~9)-8.3. z ca ~putr-g the paeters, (6.3.30)-(6.3.40), which i-

olescoe one step com~putation, (6-3.34)-(6.3.37), and an N - k steps

=-.ectcr differen-ce equation (6.3.40) and an N - k steps nxn matrix dif-

ferensce equatiom (6.3.323); -finally we have to solve an N - k step

+ M~ + 1)n marri= difference equation (6.3.33). (Note that the

z =acrix differance equation (6.3.39) can be preconputed off-line.) Tha

O.-FO control is then coaputed using (6-3.32). The total storage

capaci- imeeded corresponds to the storage of the state -and paraneter

estimates (2n) and the error covariance r-acrix (2n x' 2n). The capability

of coptwfg the O..L-F-O. control sequence in akoost real time will de-

pen-d on the complexity of the systen beiog considered and the cc-2putation

speed oi tne digital. coazputer used to iplement the O.L.F.O. control (see

also clhanter 7)_

6-4 C.e-i-r-oona Ottial Control

In this section, we shall derive the open-loop optimal control for

the detern-inistic control. problem (6.3.26)-(6.3.31). The deterministic

foxnulzrion allows us to use the discrete matzrix minimum principle

(Zheoren 2.4.1) to derive the set of necessary conditions for optimality.

Let us for:= the Hailtonian for the determ-inistic control problem

(6.3.26)-(6.3-31) for j = k, k + 1, .,N-l1.

6(j -k-)>+tr1  (jQAju( kiZ( ))P (j +1 Q1

12 1
+ < "'(j, k),W(j):k(j tk)> + h~j)u (j) 4- tr Wj)E-(j k) (6.4.1)F:2
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where &,O(jk) is the costate vector associated with i(jjk), (j-k) is

the costate vector associated with .k(l k) and P(j 1k) is the costate

matrix associated with Z(i 1k). Use of the discrete matrix minimum prin-

ciple l.eads to the following relations

(a) The canonical equations are:

o (J~llk) = A(j)-0 (jlk) +b0'(jlk)u0(jk) (6.4.2)

]?(j+llk) -G(i)L'cUjk) (6.4.3)F~~ '0 jlk) = i(l,u0(Jjk))E0(ilk)i'(j,u0 (jlk)) + R(j) (64)

L - ~(Ik) Gtlullk ~(+l~ jk (6.4.6)

0 = A'(i)u0(jlk)+0 (ij~) ~ 0(Ik)) -Wj 64

X *X

b~lk GZJ (kik) ) (klku'(k) ) (6.4.8)

P ~ ~ P (14k) ='ju~l)P~~lkiju~l) F- W (6.4.7)

[() ThIn dr minmiz n tHaionane: st(orj k

at~j time k:91k) (kj k /.
2

X1.J I/tr L 1 \jk IJA kj,T7 (~k)

ac cin)i(il)PN. (imlk) F u0 (Nlk);{h()t[2(l)Pi+I)

FtQ (6.4.90)

Ix( 1Q+ tr 1(~ I Q_ I_____
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where we have decomposed the costate matrix as

follows

0 €. •0

:P-ll 1 -2k) Plt jk

0 (jk) ... (6.4.11)

0 (jlk) 0 2(jk)j

From (6.4.7) and (6.4.9), we deduced that PO,(jk) is nonnegative definite

since F and W(j) are assumed to be nonnegative definite. Therefore,

- h(j) + 2 tr{EO(jlk)P_ (j + llk)} > 0 (6.4.12)

u°j) 0 k)

and so the control u0 (jlk) given by

u° (j xk) --hkj)+2tr (E(jlIk)._ l(j+llk ))]-'{S ' (j k)k '(J+ll k)+

2t fj+ll k)A(j) 0 (j lk)+G(j) (jl!k)P 2 (J+lik))}

j > k (6.4.13)

indeed minimizes the Hamiltonian.

From (6.4.4) we obtain equations for Eb (ilk) and .b(Jlk) for j k:

Zb (j+lik) A(j)_O (jJlk)G,(j ' + uO(jlk)4 (jjk)G'(j) (6.4.14)

.(j+llk) G(j)_(jlk)G'(j) +N(j) (6.4.15)

with initial conditions

0 (k) k,
L (kIk) E (klk,U (0,k-1)) ; Z (0,k-l)) (6.4.16)
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From equations (6.4.7) and (6.4.9), we obtain the equ~;rions for

P 0(jlk) and 0 (jlQ for j = kc, kc + 1,..,:

T4,,(ilk) =A' (Jll'i+llk)A(j) + -1W(j) (6.4.17)

2(jlk) A'i) 2( 1lk)G(j) + u0(jlk)A'(j) 0 (j+1'k) (6.4.18)

0 1 (NIk) .'. F P 0 (NIk) = 0 (6.4.19)

We note from (6.4.13) to (6.4.19), that the values of 2P(jlk) and

P ,(jlk) are irrelevant in computing the open-loop optimal control se--

quence u (jjk). From (6.4.17), 4kiiI'Jj is independent of the observa-

tion and the control, and thus it can be precomputed. To emphasize this

fact, we define

SL(j) 0 2 1 (Jlk) Z 0 ; N a j a 0 (6.4.20)

and so S.(j) satisfies the matrix difference equati)n

S(j) =A' (J)S(j + 1)A(j) + W(j) ; (N) =F . (6.4.21)

From (6.4.15,), Z. (J~k) only depends on the observation; thus it is

meaningful to define a "modified control weighting":

F (Jjk) _ h(j) + tr(lk)S(j + 1)) > 0 .(6.4.22)

Let us define

£(iLk 2P~(~~ 1  2
Thn y sig 6..3 ) oC~ 2 ~j)~ (6.4.23)

Thenby sin (6..34 to(6.3.36), (6.4.2), (6.3.13) to (6.4.23), we obtain

hithe set of matrix difference equations: j =k, k + 1, .. ,N -1.
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I ji k Y)' p ( 0k][ (j+1 k)j

-- :! = ! ... - bQ jk)-l(j Ik)O°'(jlk{ I
a 0 (j+l k). _2 0 o(j I) Q_° (j +1k)j

(6.4.24)

f(j k3i ' (k) f. 1~ ) jk
Q Q ... (1k + 5(jjk) [ (6.4.25)

0 .0 0 (il[(j 1k) (j+1l) I Q(j 1k)]

with boundary conditions at time N:

H-. .: (N Q76..6UO(Nljkl ....... .. i (N k )-

From (6.4.74) to (6.4.26) and (6.4.8), (6.4.16), we can solve for

nx(j!k), O(j k), 2o(j k) and a__°(j+ljk). To'bypass"the two point boundary

value problem, we define the matrix K(jilk) by

Px Q I k') (jlk)

= _K(j k) (6.4.27)
(j Ik Q-_E0(j IkQ

Substituting (6.4.27) into (6.4.24) and (6.4.25) we obtain

[1 + b(j k) -l(Jlk)['(jlk)i(j+llk) I = (J[k)l

Io° ( + l[k j I - I (j k)-

(6.4.28)

-10 (j Q7 R0 (i+llkY

K(ilk) -(jlk)] • =@)'(jlk)k(jlk) ... (6.4.29)

-0(ilk)j - o (j+ll)
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If [I + bo(jlk)h-l(lk)bO ' (jk)K(j+ljk)i has an inverse, then (6.4.28),

(6.4.29) imply that

{.i_(j k)-B(j Ik)-0 ' (jlk)_K(j+lk Q[.I+b (j Qk)Q- I  k)b_° ' (j.'k)_K(j+I :k"#]-i Q ' k) }-

= (6.4.30)

Since j0 (jlk), o(jjk) can be arLitrary, (6.4.30) implies that the matrix

difference equation holis:

_K(j lk) b(jk)( (j+llk)-(j+llk) ° (j k){ (jlk)+ ° (jlk)(-+l k) ° (j'k) --.

F 0 .. 01
b_°'(jjk)K(j+lik))I9(jjk)+D(j;k) (Nk) = 0 0 ... 0

.. O. ... . .

(6.4.31)

where we have used the matrix identity: [661

(I n + A B')
- = I - A(Ir + B'A)-IB' E M . (6.4.32)

--- -n ---r -- (6..nr

The identity (6.4.32) is true provided one of the inverses exists. The

two point boundary problem is now transformed to the problem -f finding a

solution of the matrix difference equation (6.4.31). The existence and

uniqueness of (6.4.24) to (6.4.26) and (6.4.8), (6.4.16) can be deduced

from the existence and uniqueness of K(jlk), N > j a k, satisfying (6.4.31).

The optimal open-loop control is given by: (N - 1 Z j > k)
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.

u°(jlk) -- ! (J k) (j ." ( + d ' (j + ! )  ..(ik

= _- (j k)',(j jk)K(J+ljk) [1_+2b (j Ik)h - 1 (j k)b_'(j jk)g(j+1Ik)]-1.

[to (j k)1 -c (jIk.

(D_ (j jk) k... h_-(j IQd' (j+kO .J (6.4.33)

r66]
Using (6.4.32) and also the matrix identity

6

I- A(A + B) -1 = B(B + A) -I  (6.4.34)

(6.4.33) becomes (N - 1 > j Z k)

u0(j ik) = -h(j ik)+b_' (j lk)K(j+llk. 0 (il k))- lO, (ji k)i(j+llk) 0 (jk)

(j ':Qd'(j+l/ ... (6.4.35)
_j0(j 1,K). Lc 0 (j i kl

We have thus shown that if the solution of (6.4.31) exists and unique,

the open-loop optimal control must be given by (6.4.35); and the 0.L.F.O.

control is given by (6.3.41). We shall consider the question of existence

and uniqueness of O.L.F.O. control in the next section.

6.5 Existence and Uniqueness of O.L.F.O. Control

From equation (6.3.41), we see that if the optimal open loop control

ou IN-1
{U(jk)j=k exists and is unique for all k = 0, 1, ..., N - 1, we can

conclude that the O.L.F.O. control {u *(k) ko exists and is unique. If the

solution of (6.3.33), i.e., the matrix k(jjk), exists and is unique, then

the control law given by (6.3.32) and (6.3.33) is the unique globally optimal
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open loop control. Since D(Jlk) is an indefinite matrix, the solution of

(6.3.33), K_(jlk) (if it exists), is not necessary nonnegative definite; in

fact it is always indefinite. Therefore, we cannot a priori conclude that

h(jlk) + b 0 '(Jlk)K(j+lik)b0 (jlk) will always be nonzero, and thus deduce

that K(jlk) will remain bounded in finite time. In this section, we shall

establish the existence and uniqueness ot the solution of (6.3.33), K(jlk),

for the case where the terminal time is finite (N < -); this result will

then be used to prove the existence and uniqueness of the 0. L. F. 0. control.

Let us define

L°(J Ik ) = < -c°(j k) ,W(j).-°(j Ik)>+2u° (j jk)<__.o~. A kJ,(j+l).?+h(jjk) (u°( . . )(j k))2

Lemma 6.5.1: If h(Xjk) + b_'(Ik)K(Z+llk%'_(Zjk) is nonzero, k = j, j + 1,

.. , N - 1, then

ArjT-o jk Xo j+ ) (j+l ;k)
°(j i ) <... >- ... i(j+llk) ... >,_Z(.i o k.,L_(j Ik) Q. °(j+llk)J 0..1-10-)]

(6.5.2)

Proof: Using (6.3.32), (6.3.33), (6.3.35), and (6.5.1), we have

__k =< li " 0 -- (ilk) > o (jIk k)

Lh(0 (j Q)b ° =< .. k6_(j+ _k) > -Z< ..( j I kj+Q0 (j Ik_~~ k) -

r 0 (j1k)

_o(jilk)e(+llk)®(jlk) > (6.5.3)- Lo (jIk)l
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By (6.4.34), (6.4.281, and (6.4.31), equation (6.5.3) becomes

L7 (*jkkj =<~~j~j1~ [.0oik .. -< .. KkJ

__________(6.5.4)

Lemma 6.5.2: Fo): all i = k, k + 1, .. ,N -1 we have

N-i N-i

tr.F Z (Nik) + ,,Wj(jk) trJ.2(i)Z (ilk) + l(SQj + l)R(j) +

j =i j =i

2 U Q< ... ,d(j + 1) >+ u 2(j)SOj + i)r (D (6.5.5)

where u(j), j i, i + I........ 1, is an arbitrary control sequence~ and

is the resulting trajectory.

Proof: Using (6.3.28), we have (W(N) F)

tr(W(j+l)-- (j+l'k)) = tri.A'(j)W(j-w.)A(j):' (jjk,)+u(j)W(j+1)4~(j~k)+

W(j-il)R(j)+2u(j)W(j+l)A(j)>--(41k)l ; j =i, i + 1, .. ,N -1 (6.5.6)?

By applying (6.3.28) repeacedly, (6.5.6) yields

tr(W(j+1Y- (j+ltk)) =trI-'"j'i)W(j+I)- (j ,i)E il"

(j _,l R Z + 2 ( ) _Z k 2 M j Z l w j l
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From (6.3.19), we have for all j :S N - 1 that

N-i
A-A lj),>-~)W~~(Llj (6.5.8)

Summing (6.5.7) over j 4 , 4 1, ... , N - 1, and using (6.5.8) and (6.3.36),

we obtain (6.5.5) after a fair amount of straighntforward maninli'ation.

To describe the performance of the optimal opan-loop control sequence,

we shall introduce the notion of "conditional ovpen loo2 optimal cost to Yo"

Definition 6.5.3: The conditional open-loop optimal cost to go for the ci-

..erministic control problem, (6.3.26)-(6.3.31);

N-1
+ [ (jk)W(j)-RQ 1k)+tr C,()~ k+ ju()1(6.5.9)

j=i

where R(ijk), E(ilk) satisfy the set of equations (6.3.26)-(6.3.28).

Noe ht 0~ is defined as a function on M xR.Fromijk (2n)-(2n)x

(6.3.28), we see that E(jik) a 0, j = i, i + 1, .. ,N -1, if and only if

XZUk ~0 Thus, from (6.5.9) we have

0ikE~ Z 0 if Z Z 0 .(6.5.10)

By lemma 6.5.1 and lemma 6.5.2 we immediately deduce:

Theorem 6.5.4.: If h(tIk) + Sc"(Zlk)K(Z+lik)6o(Zlk) is nonzero, i=i, i + 1,

... ,I N - 1, then the conditional open-loop optimal cost to &o has the closed

fo rm

il 24 t (i~ (j+)R(j)j + .1i(R :SW +K(ilk) i>
j =i

(6.5.11)
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wherc

-nl -n - .. (6.5.12)

We shall now make use of (6.5.11) and (6.5.10) to establish the exis-
tence, uniqueness and boundedness of K(jlk), j k, k + 1, . N 1;

!! k = 0, 1, .. ,N -1.

Lemma 6.5.5: Let G(j)B G'(j) _< B, for all B :0, j = k, .., N - 1. Then
we have h(jk) + _o,(j k) (j+l Q)jO(jp:.) > 0, j k, ... , , _ 1.
Proof: If F Z 0, then since h(N -1) > 0, we have

(N-i) ' (N-1 k)k( k)_ (-1k) = h((-Ilk)F)

+4--0'(N--1Ik)F 6(-llk) > 0 . (6.5.13)

Now assume that (ZJk) + b"(21k)R(2+lk)_°(Zjk) > 0 for Z i, i + 1, ... ,

N - 1 (k < i). Consider the special case: R(j) = 0, j = k, ..., N; then,

by the induction hypothesis, theorem 6.5.4 and (6.5.10) imply that

j l k_= r (i-ik)S(i))+ ,c(i-Ilk)(ilk) '(i-llk) _> 0

(6.5.14)
where we have chosen

_,k)G (i-l) 1Zi~i-1 Qk ... ... >
LG(-I)ZD(i+l lk) <(i-l1k )  .

(i-z k) U- 1(i-l) G' (i-1)

(i-1)) ( (i- (6.5.1)

LV ''Z(-l):_~i1) ilkG i1
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and since h(i - 1) > 0, we have from (6.3.37) that

h(i-l °k)+b0 '(i-1jk)k(l Jk)b(i-lik) - I 0

(6.5.16)

Thus the lemma is proved by induction.

We can now easily prove the existence and uniqueness of the solution of

(6.3.33), Kjjk)Yj' k 0, 1, ... , N - 1.

Theorem 6.5.6: (Existence and Uniqueness) Let B Z G(j)B G'(j), j = 0, ..

N - f..r all B a 0. The solution of (6.3.33) {K(jlk) exiss, is

unique and is bounded, (N < ), if 0 (k~k), b0 (klk), A(k), W(k), F N(k) and

h(k) are bounded, k = 0, 1, ... , N - 1.

Proof: The equation (6.3.33) can be written as a set of two equations (see

chapter 2, section 2.5)

E< K(j Qk ID( (j I k) -'°o(j Ik) V (j+l'jk)) 'R'(3+I, ) (0" (J k)-b_°(Jjk)V o (J+l))

+D(jlk)+V'(j+l)h(jlk)V (j+lk) (nk) F j = k,k+l,...,N-1
-o0

k = 0,1,...,N-1

(6.5.17)

Sv (j+llk) ® (j 1k)
(6.5.18)

From (6.3.38), (6.3.40) and the assumption on boundedness, we have that

b°(jIk) and h(jIk) is bounded for j = k, k + ]I ... , N - 1; k = 0, 1, ... ,

N - 1. By lemma 6.5.5 V (j+llk) exists, is unique and is bounded. The

assertion follows from the linearity of (6.5.18) and the fact that N <
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* =-ol-_irv 6.5.7: he qpi=a o--per-1oop control, :u (j3k)".=k ex:Is,

ian is c ed If --he ass ztions in T or-- 6.5.6 are satisfied;

furc.e:-".ore. i " kU (O~k-!)),_-k,U (Ok-I)), b(kk.,'" (O,k-1)) are

-heore= 6.5.S: Let B Z G(j)B G'(j), j = 0, 1, .... N - 1, for all B i 0,

=6 A__(k. R(), (k), (k), W(k). h(k , F are .'aimded, k = 0, 1. .- , N - 1;

zh e O.L.F.O. contral, u (k), ;zr 0, 1. .... N - 1, exists, is unique and

is beo-ded.

?z__f: We sal ase id i on k. Vhen k = 0. x(O0) and b(O 0) are

b- d al=zst surely; also :( 0) :is beu-ned; thus b- corollary 6.5.7,

u0 (O 0) exists, is u--ique and is bcnded a.s. By (6.3.41), u*(0) exists,

is =Ique znd is bozdeed. ssee the satenenc of the theore= is true or

k = 03 -.. , 1" < N - 1. By tee zstptions and he inductiIn h.h~pothesis,

Eh-e ieeti~fi-cation ecuasciens, 1.6.3.J19)-(6.3.23), i=plv char *Gi+l i+l],U (0,41))

and b(,+1 +1!,i (0,4)) are bounded a.s., and chat _(L+l a+l,1 (Ok)) is

bo-ded, th'.I corollay 6.5.7 innies that a(+l i-+I) exists, is unique

and -is bo=-ued a.s.; by (6.3.41) the assertion of the cheoren- holds for

u G. k = 0. j 1 .... z -

One would ice to extend the resuits to the infinite tine case with

N - -. Unfnrtunately, this is seldonly possible. From (6.3.39), we note

that if we let N - =, S(j) will reaein bounded if and only if A(k) is ex-

ponentially stable; thus, the solution of (6.3.33), K(j Ik), with N will

not be =eaningful unless A(k) is asyptoticaliy stable. In many cases of

interest, the system to be controlled is unstable. Therefore, we shall not

investigate the solution of (6.3.33) with N
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6.6 Asymptotic Behavior of the Identifier

In this section, we shall study the asymptotic behavior of the identi-

fication equations, The results will allow us to consider the problem of

controlling the system S over an infinite time interval (N - -).

Definition 6.6.1: {(A(k), C(k))Ik* is said to be completely observable
k=0

of index v at k if the observation matrix

M ,(k,v) = [C'(k) " (k,k)C'(k + 1) " (k + v - 2,k)QC'(k + v - 1)]

(6.6.1)

is of full rank n. {((A(k),C(k))}=0 is said to be uniforly comletely
fk=Orml M2

observable of index v if the pair is completely observable of index v for

all k = ,....

Theorem 6.6.2: Let {(A(k),_C(k))= be uniformly completely observable of

index v, and suppose that A(k), G(k) are nonsingular, k = 0, 1, .... If

u(k) # 0, k = 0, 1, ..., then {(A(k,u(k)),Z(k)}k= is uniformly completely
'- k=0

observable of index v', v' f 2v.

Proof: By (6.3.17) and (6.3.20), we have

C(k) :0

C(k+l)1A(k,k) C(k+l)u(k)

H-! -(k,2) k+j+
C(k+j)AA(k+j-l,k) • , C(k+J) A(k+j-, t+i)u(Z)A (Z-l,k)

-- _ c=k : -- G
k+2v-2 "

C(k+2v-l)1A(k+2v-2,k): -" C(k+2v-l)IA(k+2v-2, £+i)u() G (-l,k)j
-- " Z=k -

(6.6.2)

By assumption, the first my rows of vectors contains at least_ n independent

vectors. Among the rows vectors C(k + v + j)jA(k + v + j - l,k), let
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_c' (k + v + j)_Ak + v + j Q,k), ... C' (k + v + j)jA(k + v + j -l,k),

be the v. vectors which are independent of the row vectors:3
__CQk + v)OA(k + v - l k), C(k + v - 1)1A(k + v,k), .. C(k + v j-.)

-AA[ A(k + v + j - 2,k), j = 1, ... , v - 1; where

C~k+ +~ LCk + v + jC(k + v j) = "(6.6.3)

t (k + v + j)I

and c.() is some permutation of {1, 2, ... , m}. Since (A(k),C(k)) }k03

is uniformly completely observable of index v, it follows that v. $ 0,

i = 1, ... , v - 1, and ti at

m + v I + - + V' ;- n (6.6.4)

Assume that we have the dependence
v+j-l

= '((k+v+j )(k+v+j a'_js)C(k+i)lA(k+i-l,k) i < s < . (6.6.5)
3 i=0

where the only possible nonzero enttes of c2(j,s), i = 0, ... , v + j - 1, are
-I

those corresponding to independent rows of C(k + i) (k + i - l,k), i = 0,

V + j - 1. If there exists no a!(j,s), i = 0, ... , v + j - 1, which

bears the relation (6.6.5), then the (m(v + j - 1) + o(s))th row vector of

M, -(k,2.j) i6 independent of the first m(v + j - I) row vectors. If there
--A, C

exists o!(j,s), i = 0, ..., v + j - 1 which gives the dependence (6.6.5),

then such a dependence is unique by construction. Now assume that the

(m(, + j - 1) + L(s))th row vector of M, -(k,2v) is dependen" on the first

AC

m(,' + j -1) row vectors, then we must also have the dependence
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k+v+j - 1

V+J-l k-is-i

*!j~) ki Ak~-,+Iu .(Zl (6.6.6)

i=l 1-k

Since AMk is nonsingular, by (6.6.5) w~e have

r+j-l k+v+j-l

a!(j,s)C(k+i)vA k+i-],1+l)u(Z) (Z-1,k) =0 (667

Vwhere = ki

YA(i,j) = A (i)A7! (+l1) ... A7 (j) i > j . (6.6.8)

Since {(A(k),C(k))}" 0 is uniformly completely observable, t~he vector

at (j Qs) 4 (a'(j,s) ... 'js)] (6.6.9)

cannot be the zero row vector, s = 1, ... , B y assumptiona G(k) is

nonsingular, therefore (6.6.7) is true if and only if u(k + 4) =0, i 0,

1, ... , j which is a contradiction. This result applies for s = 1., ... ,v

j =0, 1, ... , v - 1. Together with (6.6.4) and the remark made at the

beginning of the proof, we have that M-. - (k,2v) will have rank 2n if

u(k + i) j 0, i = 0, 1, .. ,v - 1. The theorem follows from the assumption

that u~k) # 0, k =0, 1....

Corollary 6.6.3: Let A~k), G(k) be bounded and nomnsingular. If

{(A(k),c(k))}o is uniformly completely observable of index vi, the error

covariance matrix, Z(kik,U(0,k-1)) which satisfies (6.3.21) to (6.3.23), will

remain bounded for all k =0, 1, .. where u(k) is any bounded but nonzero

4 control for all k =0,1....
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Lemma 6.6.4: Suppose that G(k) satisfies

G(k)B BG' (k) 1 B ; 3 M B_0 . (6.6.10)

Let Y(k) 0 0, i.e., there is no driving noise in gain dynamics; then for

any control sequence, we have

E,,(k+1.k+l,U(o,k)) _S E(kik,U(O,&.)) . (6.6.11)

Proof: From (6.3.23) and (6.3.21), since N(k) = 0, we have

Z (k+llk+I,U(O,k)) -f .2(k)4(klk,U(O,k-1.).E'k)-.1 ". * ' 'U(Ok

(a(k+l)A(kjk,U(o,k))c' (k+l)±.Q(k+l))V*' (k+llk,U(0,k))K 1 ] (6.6.12)

where V (k+l k,U(O,k)) satisfies (6.3.21)-(6.3.23), using (6.6.10), (6.6.11)

follows immediately from (6.6.12).

An immediate consequence of lemma 6.6.4 is that if (6.6.10) is true and

)L(k) -.0, then there exists E such that

lrm b(klk,U(O,k - 1)) = (6.6.13)
k-a

Note that (6.6.13) is true independent of the observability of {(A(k),C(k))JkO.

In the following theorem, we shall give sufficient conditions under which

S -0.

Theorem 6.6.5: Let y(k) = 0, A(k), G(k) be bounded and nonsingular and

G(k) satisfies (6.6.10), k = 0, 1, .... If {(A(k),C(k))} 0 is uniformly

completely observable of index v and u(k) is any bounded but nonzero control

for k 0, 1, ... , then

k-m L(klk,U(0,k - )) =0 (6.6.14)
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Proof: Let e > 0 suc5 that

I 1-(k+2vlk+2vU(0,k+2v-1)) - j(kjk,U(O,k-l))j I E (6.6.15)

where 1I 1i is the 9pectral norm. Since 7 (klk,U(O,k-1)) -: 0, k 0 0, 1,

(6.6.11) and (6.6.15) imply that we have the inequality

I.b (k+j OkU(0,k+j-l) - 1(k+j-1 k+j-l,U(O,k+j-2) ,

j -1, 2, ..., 2v . (6.6.16)

Using equation (6.6.12), we have

€~ v I[Ol]_*(k+j I k+j-l,U (0,k+--l)" - C(k+J)Z (k+j-l lk+j -l,U(O~k+j-l)"

C'(k+j) + _q(k+j)V (k+jIk+j-1,U(O,k+j-)) I (6.6.17)

By corollary (6.6.3), C(k+j)(k+j-llk+j-1,U(O,k+j-1))&'(k+j) + _(k+j) can

be uniformly bounded, so

I (_(k+j) 1(k+j k+j-1,U(O,k+j-))[j _

1

I (1k+j ) Z(k+j -l1k+j -1, U(0, k+j -1)'(k+j) +(k+j)? 2 I ((k+j)A (k+j-1 k+j -1, U(0, k+j -1)

C' (k+j)+R(k+j))2 V (k+j Ik+j-U(0,k+j-))K .-

< C. 6 ( ) 1, 2, ..., 2v (6.6.18)

6.(e) is continuous in e and 6.(e) - 0 as e - 0, j = 1, ... , v. Using
3 (

(6.3.21), (6.6.18) can also be written as follows

f
I

!



Zb (k+j-l4k+j-1,U(0,k+j-2X;' (k-Ij-'L) I

=1,...21 (6.6.19)

Si.nce V (k-+jlk+j-1 2.UQ3,k+j-1)) is bounded for j -1, .. , therefore

(6.6.17) and (6.3.21) in-p1v that

11.I [ I JV(.t+i !-jIUOl~-)Ekj;(~-l-j1Uk~~-)

(6.6.20)

where S.(e) is continuous in e, E - 0 as E 0, 1 1, 2,....By using

(6.3.23), (6.6.20) and (6.6.21) and the assumption that G(k) is nonsingular,

the inequalityv (6.6.19) ino~lies

Z.(kI-i k+1,EC(0,i4)

(C(k-1 L(] ~ lU(~ I (6.6.22)

-+i~,(kOl--L(,k) )

L(k-+l Ik+,J(Ok)

j =2, 3, ... , (6.6.23)
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where f.(e) is continuous in E, f.(.--) - 0 as 0 - 0, i = 1, 2, ... ,11

Equations (6.6.22.) and (6.6.23) imply

[E-b(k+l lk+l,U(O,k);

!S |1l -f(-) (6.6.24)
(k+! I k+l, U(0,k).

where f(C) - 0 when c 0 and is continuous in e. By theorem 6.6.2,

'1- , (k + 1,2v) is of full rank, so we have

1i1 (k+llk+l,U(O,k)) I- 6':() 6'(-) - 0 as - 0 (6.6.25)-=xb

iI4 _5(k+lk+l,U(Ok))H _ "(r) S"(-) - 0 as 0 . (6.6.26)

Now the conclusion of the theorem follows from (6.6.13).

Theorem 6.6.5 can be extended to the case where u(k) is bounded but

nonzero control for all but a finite number of k's. Since Z(klk,U(0,k-l)) Z 0,

(6.6.14) also implies

lim r (klk,U(0,k-1)) 0 (6.6.27)

if the conditions for theorem 6.6.5 hold.

Let us consider an observable system 9, (6.2.1), the gain parameters

are assumed to be unknown and satisfy

b(k + 1) = G(k)b(k) (6.6.28)

with G(k) satisfying (6.6.10). Assume that we want to control the system S

over an interval N < -. In the beginning, the modified weighting on the

control is high, and thus in general, the control magnitude will be low at

!I I
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the beginning. Thus, the trajectory of the overall control system would

be pretty much the same as the input-free trajectory of the system 9. If

the matrix A(k) is exponentially stable, the true state of the system will

evolve toward zero by using negligibly small control magnitudes (even zero).

The result is that little effort of the input, u(lk= 0 is spent for control

and identification purposes. We would expect thac the estimated parameters

will hardly converge to the true parameters, b(k). On the other hand if

A(k) is not exponentially stable, then the true state of the overall system

will diverge. This diverging phenomenon will be noticed by the identifier,

thus resulting in a high control magnitude because of (6.3.32). Since

:ittle is initially known about the gain parameters, the high magnitude con-

trol will be utilized mainly for identification purposes. Therefore the

control will be kept bounded away from zero as long as exact identification

of b(k) has not been obtained. Using theorem 6.6.5, we predict that the

estimated paraneters of b(k) will converge to the true gain parameters

before the control magnitude goes to zero.

Analytica± studies of the convergence rate of the O.L.F.O. system are

not yet available. From the above discussion, we may predict roughly that

the convergence-rate for unstable system will be relatively fast depeldin.

on "how stable" the system is; and the convergence-rate for stable system

will be very slow.

For control over an infinite time period, see section 6.7(C) for de-

tailed discussions.

Finally, we shall discuss some interesting implications of theorem

6.6.5. Consider an observable system,, (6.2.1), with unknown gain
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parameters satisfying (6.6.28) and with G(k) satisfies (6.6.10). Let

(x(kIk,(kjk), -b(klk,U(O,k-l)) be any ad-hoc control law which is "put"

after the identifier (see Figure 6.4) and with the following properties

(k .1 0):

1) .(,,-): Rn x R M -x R
nu

2) 1' x,b,9 0, xERnb.  Rn, Z M x#0;L #0

3) Sk(_Xb,O) = -(h(k)+b'(k)K(k+l)b(k))-b'(k)K(k+l)A(k)x

o Rn b Rn

From condition 2, we see that Z (klk,U(0,k-l)) - 0 as k - (6.6.14); and

so from condition 3, the ad-hoc control scheme will converge to the optimal

control strategy when the full dynamics become known. This indicates thar

the ad-hoc scheme (Q(klk),b(klk),,_(kjk,U(0,k-l)) can provide reasonable

simulation results.

6.7 General Discussion

In this chapter, we investigated the problem of identification and

control of discrete linear systems with unknown gain from the theoretical

standpoint. The control is open-loop feedback optimal. The implementation

of such a control (O.L.F.O. control) was described to some detail. The

actual implementation for O.L.F.O. control for third-order systems will be

discussed in more detail in chapter 7. As we shall see later, such a

proposed scheme appears to be computationally feasible and that the results

are reasonable and appealing. A deeper theoretical understanding of the

derived O.L.F.O. control is possible from the results in sections 6.4 andK6.5. The questions of existence, uniqueness of O.L.F.O. control are con-
sidered in great detail. The asymptotic behavior of such control systems

was treated in section 6.6; some of its extensions wj~l be discussed later

~in this section.

,I
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(A) Discussion on Approaches

The problem of combining identification and control of linear system

uith unknown gain have been considered by several people. Farison [60]

considered an ad-hoc procedure which basically assumes the separation be-

tween identification and control. Murphy [61] considered the approximate

effect of iteration between control and identification and he pre-supposed

that the control was a pure feedback of the estimated srates. Gorman and

Zaborszky (62. used a similar approach to that of Murphy and obtained a

suboptimal control which required the solution of a sequence of two point

boundary value problems. Essentially, [61] and [62] are approximately

Bellman's equation. The approach taken in this chapter is different from

those in (60], [611, and [62].

Bar-Shalom and Sivan' [63] also used the O.L.F.O. control approach to

consider control problems with random parameters. They derived a general

solution but made no attempt to study at.alytically the derived results. The

approach taken in this chapter is primarily motivated by computational

feasibility

From the discussion made at the end of section 6.6, we ean see why

different computation schemes suggested by Farison, Murphy, Gorman and

Zabor.zky will all be expected to give reasonable simulation results. It

is ha-d to quantitatively compare our approach with theirs without extensive

simulation experiments. One computation advantage of our results over those

This reference was brought to the author's attention when most of the
theoretical work of this chapter (sections 6.2 to 6.5) had been completed.



of urp.h-- Gbran and Zb-rsz-y is that we replace a seouence of nr-o point

boundary proble=s by solving a s-quaence oat R iccati type difference

equation of de-4 sion (n * 1)m x (m + !)n, (6.3.33). This =attix Kiccati

diisference eqcation is solved backwsrd in time starting -irv. the zer-inal

ti=Q to the present rine k; i.e., an N - k sEeps co.urarion, u-ere k = 0,

1, o.... - 1. Conurational wrise, this is easier than solving a two point

ba"-dary proble=. in our approach, the theoretica prcof on the existence

and uiou eess of O.L.F-O. contral sequence is available; this givzs us

confidence in trying out che su!o-tiJal control scheme tsiug a dig-ital

co--puter. Also, we can deduce and oredict roughly the behavior of the over-

* all O.L.F.O. cantrol systen (5ection 6.6) fro the derived equatiens (section

6.3).

(B) Vector Control

In our investigation, ve assumed thac *he control is scalar. However,

the approach caz be extended in a strightforward conceptual -anner to tu.e

vector control case. First, a set of identification equation is derived

which wil generate the estimate of the current state, the c-Irr'.nt esti=are

of the u.knoun gain oatrix and the different cross-error-covariance -- trices.

An open-loop control problem is formulated as in section 6.3, equations

(6.3.20) to (6.3.31) and discrete matrix min-Mn principle is used to obtain

the extremal solution. The results vil be similar to those of scalar con-

trol case. However, the equations in the vec or control case will be more

complicated.

(C) Control Over !nfinite Interval

Let us consider the problem of controlling the system S, which is time

invariant and unknown constant gain b, over an infinite interval, i.e., N - w.



It was .ointed out (in section 6.5) that the problem will not be very

_ea-ingful in many cases if" we just consider the obtained results (section

6.3) and let N - =. 7Ce siggesc the windo-shifLing approach. Assume that

at a11 tires, we have N = rz steps to control (see Figure 6.5), thus at all

i--es we solve an open-loop control problen over an interval of .'" steps.

this arproach is =otivazed by co-zurztional consideration and r.he theoretical

results derived in section 6.6.

We note that in the O.L.F.O. approach, we have to resolve the open-loop

control problem at all tine k so as to adjust the control schere accordingly.

In our case, we have to co:ure K(k k) in a backward direction starting from

the ter=inal tine Y to k for each .K. If N is very large, this co-putation

will require a very leng ti=e to accoplish. From a o3putational stand-

point, we would like to "cut back" the terminal tize. Conceptually, in

trying to control over an infinite tine period, the controller looks into

all future effects caused by present action, and decides on the optimum

=ove. The window-shifting approach suggests that instead of looking at all

future effects, the controller looks at only near future effects caused by

present actions and decides on suboptimal noves. One may view such an

approach as a "short term adaptive scheme." Note also that we can adjust the

"window width" according to computational capability. At all times, we need

only to solve for k(kak) in a backward direction starting from N + k to k.

Thus from a conceptual and a computational point of view, such an approach

may be desirable.

Assume that the time invariant system S being controlled is observable

and controllable. If b is known exactly, then if we consider control over

infinite time period, the optimal feedback gain is constant and is given by
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c = -(h + b'K b)b'K A (6.7.1)

where K is given by the steady sta!e solution of

K.+, = A'(K. - Kb(h + b'K.b) -b'K.)A + i; K F (6.7.2)

(see chapters 3 and 4). Let N be the integer such that for n _2 N,

''K K C > 0 . (6.7.3)

Such an integer N can be found experimentally off-line. Adjust the window

width to equal to N, and apply the window-shifting approach. Add some

nonzero control for identification purpose if it is necessary (see also

chapter 7). Using the results in section 6.5, the existence and uniqueness

of such control sequence is guaranteed. By theorem 6.6.5, the estimate in

b will converge asyLptotically, and so when L(klk.U (0,k - 1) b, we have

_(k! k). .

where K(k,N + k;F) satisfies

K(k,N+k;.F) = A'(K(k+l,N+k;F) - K(k+l,N+k;F)b (h + b'K(k+l,N+k ;F)b)

b'K(k+l,N+k;F))A + W ; K(N+k,N+k;F) = F (6.7.4)

and

u (kk) -_ (k)R (k k) = -(h + b'K(k,N+k;F)b) -B'K(k,N+k;F)A L°(k k) (6.7.5)

(See discussion at the end of section 6.3.) Comparing (6.7.2) and (6.7.4),

we note that
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K(k,N+k;E) N K (6.7.6)

Thus asymptotically, we have a time invariant overall control system.

(D) Convergence-Rate

We have not studied in detail (analytically) the convergence-rate

of the suboptimal O.L.F.O. control system. We can only deduce and predict

some rough qualitative estimates about convergence-rate for stable and un-

stable systems. We shall study the question of convergence-rate via simula-

tions; some conclusions and discussion will be included in the next chapter.

(E) Conditions for Convergence'

From theorem 6.6.5, we note that if y(k) = 0, the sufficient conditions

for convergence are observability, nonzero control and (6.6.10). The first

two conditions are relatively easy to understand and intuitively appealing.

The third condition needs some explanation.

Suppose that G(k) satisfies (6.6.10); then by taking B I, we have

G(k)G'(k) 1 (6.7.7)--n

Thus, we have

(k)I : i 1 (6.7.8)

where H-H is tne spectral norm. Equation (6.7.8) provides us with the

necessary condition for (6.6.10) to hold. Intuitively, (6.7.8) means that

the uncertainty of b(k) cannot grow.

Let G(k) be an nxn matrix such that

G(k)xx xc Rn x (6.7.9)

This discussion was motivated from a suggestion made by Prof. J. C. Willems.

A,
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If B Z 0, then B =DD' for someD M. LetD= [d! ... a ], equation

(6.7.9) implies

G(k)DD'G'(k) : Dr' (6.7.10)

and so G(k) satisfies (6.6.10). Thus (6.7.9) provides a sufficiency test

for (6.6.lC). Geometrically, (6.7.9) implies that G(k) is a linear transfor-

mation which is directionally invariant but shrinking or retaining the

length of each vector. Some weaker sufficiency tests which have some

physical interpretations will be axplored in future research efforts.

(F) Different Cost Criterion

The approach can be applied to the more general case where a cost

criterion other than quadratic is being considered. The identification

equations remain unchanged but the open-loop control problem thus fcr='-

lated will be different from (6.3.26)-(6.3.31). By using the discrete

matrix minimum principle, we shall obtain a set of equations which define

a two point boundary values problem.

6.8 PersDective

The problem of stochastic control of linear systems with unknoun gain

was also treated by Florentin (64], Farison (60], Murphy [61], Gorman and

Zaborszky [62]. The approach in [61]-[64] is that of approximating the

solution of Bellman's equation. [60] presuppose separation.

Open-!cop feedback controller was described by Dreyfus [26]. Open-

loop feedback optimal control approach was also used by Bar-Shalom and

Sivan [63] in considering control of discrete-time linear systems with random

parameters.
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To the author's knowledge, for this particular Droblem of controlling

linear syste= ith unknocmr gain, the investigations in sections 6.5 and 6.6

represent the first extensive analytical studies on the deri;d subopotIal

solution. The contributions being that a plausible co=putationally feasible

suboi-a! solut-on is derived using the O.L.F.O. approach, extensive

analytical studies on the derived solution are carried out, and fro the

derived results so=e rough behavior of the overall suboptifal control

sysre= can be deduced; also we have a deeper understanding on the effects

(qualitativeiy) of uncertainties on the control actio--.



C-I-TER VII

CONTROL OF THUMD ORDER SYSTEFS WITH KN',_OWN' ZERUES:

LN1ERIAL XAMLE-S

!a the last chapter, t e have studied theoretically the problem of

control of a discrete time linear system -ith unknown gain under the

cualratic criterion. A suboptizal adaptive control system was derived

using the O.L.F.O. approach, and the asymptotic behavior of the control

system was discussed. There are still some im portant questions which have

not been treated theoretically. For example, the rate of convergence of the

suboptinal control system is in general of great interest, but was not

treaced in detail. Co.-.uter studies were carried out on some soecific

ex-.les of third order systems. The main purpose for these studies is to

provide us with some qualitative ideas about the rate of convergence of

the suboptimal control system for different types of third order plants.

Let us consider a stochastic continuous ti=e-invariant linear system

described by:

xCt) = A- x.(t) + b.- u.(t) + d if(t) " x(0) "- G(O, )f .0 I(7 .1 )
V.(t) = C' x(t) + nf(t) b % G(O, ,)

A. f -:b

where f(t) is a scalar driving white Gaussian noise, nf(t) is the

scalar observation white Gaussian noise. The statistical laws of k(t)

and 17 f(t) are assumed to be known-:

t2  t2
[I :f(t)dt - G(o, f r dt)f (7.2)
ti tI

t2  t2f nf(t)d t G (O, f q dt (7.3)

t t-
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From (7.1), we have

At t A(t- T) t At - )
x.(t) = e 0 bfu Cr) dr + 0 rf df(T)dT (7.4)

Assume that we take observations only at discrete instants of time t = A,

2A, 3A ... ; A is assumed to be small such that u(t) = u(kA%), (t) =

t - [kA, (k+1)A]:

:AA -,f(kA~) kA Af(k
(k -A =e :Fe X(0) + foe bf uf(T)d:T-ff

kA TOA )
+ oe -df rf)d]

aAf Co A A a
+ f0 e do - f uf(kA) + f0 e do d f(1A) (7.5)

D-efining

~A A a
x(k)= (kA) ; A= e ; b f 0 e dobf

A A (7.6)

d= fOe do !df ; (k) f(kb) ; u(k) =uf(ka)

(7.5) becomes

x(k+l) A xk) + b uCk) + d (k) ; x(O) ' q(O, Z o ) (7.7)

Defining

y(k) yf(kA) ; n(k) n f(k) (7.8)

The observation sequence is

y(k) - c'x(k) + n(k) (7.9)

The statistical laws of E(k), n(k) are

(k) ' Q(O, r) (7.10)
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rn(k) '(0, qA) (7.11)

The gain vector is assumed to be unknown but constant, therefore the

equation for the unknown gain is

b(k+l) = b(k) ; b(0) '- G(b Zo) (7.12)

We can now apply the results in chapter 6 to equations (7.6), (7.9), (7.10)-

(7.12).

A computer program was designed which operates as follows:

(1) Read in Af bf, C, c , r, q, , x" b, the final time N and

the different weightings W, h, F, and covariances -

(2) A subroutine, which was developed by Levis 175], was used to

convert the continuous version, (7.1), to the discrete time

sample data version (7.6). The covariances of (k), r(k) are

computed using (7.10), (7.11).

(3) The true value of x(k) was recorded. Using a noise generating

subroutine, a sample value of y(k) was obtained. Assume that

R(k-l/k-l), 8(k-1/k-l) are recorded. A subroutine for the

identification equations (6.3.19)-(6.3.23) was used to obtain the

current estimates -(k/k), S(k/k), and the error covariance

matrix E(k/k) recursively. These values ware also recorded.

(4) A subroutine based on (6.3.32)-(6.3.41) was used to obtain the

adaptive control u (k).

(5) The control u (k) was applied to the system (7.6), using a

noise generating device to obtain a sample value of (k); then

by (7.6), we obtained the value x(x+l).

(6) We advance k - k+l and repeat (3) through (5) until we get to

the final time k = N-I.
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The program was written in such a way that if we set b(k/k) = b, and

b 0 0, then the procedures (3) through (6) will give us the truly optimal

stochastic control when b is known. Using a plotting subroutine we can

plot out the truly optimal trajectories vs. the O.L.F.O. trajectories; the

true b vs. the estimated b, and optimal feedback gain vs. adaptive gain

(it was noted that the adaptive correction term will converge to zero quite

fast), under the requirement that the same noise samples (Q(k), n(k)) were

used for both the known b and unknown b cases. These plots provide us

with qualitative uDderstanding on the rate of convergence of the overall

st-boptimal O.L.F.O. control system.

In all the computer simulations, unless otherwise mentioned, we set

the values:

A 0.2 sec, r 0.05, q 0.45, d [ = j (
l (7.13)

i!3' --"!3, &oo 4 1, c' [100]

Example 1: Unstable System

It is assumed that

A -- ; . H ; b= = ; [1(0) ( 7.14)

such a system has a transfer function (see Fig. 7.1)

H ( S )  (s + 3)(s + 2) (7.15)
1 (0 - 1)(s 2 + 2s + s)

so that it has an unstable pole at s 1. Initially, we set

(0/0) = O](7.16)
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IX__ 2

Fig. 7.1lb POLE ZERO PATTERN FOR EXA.MLE 2: STABLE SYSTEM
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i.e. we started out with an initial guess that the system has no zeroes.

The final time is N = 40.

Many computet runs have been made on the same system with different

noise samples. The plots for one particular sample experiment, which

represents a fairly good average behavior, are shown in Figs. 7.2-7.4.

From the experimental data (which are not shown completely), we can obtain

a rough idea about the behavior of the suboptimal O.L.F.O. control system.

From the experiments, it was found that in the beginning, the O.L.F.O.

adaptive gain is approximately zero (Fig. 7.4) and the O.L.F.O. trajectory

follows closely to the input-free trajectory (Fig. 7.2). The diverging

phenomenon is detected by the identifier; controls of considerably high

magnitude are then anDlied for a few steps. This is indicated by the fact

that there are sharp jumps in the state trajectories. Experiments show

that these jumps are not caused by bad noise sample because the same

phenomenon appears in different sample runs at approximately the same time

interval. The high magnitude control serves mainly for identification

purposes, this is revealed by the fact that at the next time unit, the

estimates of b closely agree with the true b (Fig. 7.3). As was

predicted in chanter 6. section 6.3, the O.L.F.O. adaptive gains do con-

verge to the truly optimum gains (Fig. 7.3). The correction term vs. time

is not shown in the figure, but simulation results indicate that the

correction term goes to zero very rapidly after the identification of b

is essentially completed.

Another set of simulation experiments was carried out where we kept

the same sample noise but varied the weighting h, (h > 0). It was found

from the experiments (not reported in here) that the maximum magnitude of

the overshoot in the O.L.F.O. trajectories varied inversely with the value
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of h; if h was large. we have relatively "lower" overshoots; wherezs, if

h was small, we had relatively high overshoots. Also, the experiments seem

to indicate that the convergence rate and the final estimation error in b

seem to depend on the value of h we chose; with large h, we have relative-

ly slow convergence rate and relatively big final estimation error in b;

if h is small, we have a relatively fast convergence rate and relatively

4 small final estimation error in b.

In the next set of experiments, we kept the weighting fixed (h = 0.1),

and repeated the first set of experiments with larger driving noise co-

variance (r = G.45) while using the same observation noise sample. The

experimental results (not reported in here) seem to indicate that the in-

crease in driving noise covariance has little effect on the convergence

rate of the O.L.F.O. control system.

it is of interest to find out whether the initial guess on bf will

be sensitive to the resulting O.L.F.O. control system. We carried out a

set of experiments where we fixed

bf [ ; 0 (7.17)

The transfer function is

H-(s) = -i (7.18)
I (s - 1)(s2 + 2s + s)

The initial condition on x,(0) was kept fixed, and using the same sample

noise, we varied our initial guess in bf. The same runs seem to indicate

that though the sanple O.L.F.O. trajectory varied with different initial

guesses in b.; the convergence rate was quite insensitive to the guess in

bf.
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GRAPH B
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Exa=DJ.e 2: Stable System

It is assumed that

"f= [ 0 ; [2 ; (0) (7.19)

The true transfer function for the system is (Fig. 7.1)

H 2(s) - (s + 3)(s + 2) (7.20)
ts + 1)(s 2 + 2s + s)

The system is stable.

In the first set of experiments, we initially guess

bf (0/0) = [12 (7.21)

4.e. that the zeroes are located at - /!-- and The4* 4 4 4

weighting on the control is h = 1. We take the final time N = 40.

Sample runs for the same system with same initial guess (7.21) were

made and the plots for one particular sample are shown in Figs. 7.5-7.7.

As opposed to the unstable case, the 0. L. F.C. adaptive gain is some nonzero

vector, and so the value of the O.L.F.O. control is not zero at the

beginning (Fig. 7.7). The control is used both for identification and

control purposes. The system is stable, and since no large magnitude

control is applied, the O.L.F.O. trajectory decays down to zero (see

Fig. 7.5). This decaying phenomenon is noticed by the identifier, and

thus the control is kept near zero to save energy. Therefore, after a

certain time interval, when the O.L.F.O. trajectory goes near the origin,

the O.L.F.O. control will remain zero for most of the time. The system

behaves almost like an input-free system. In fact, this is also what the



truly optimum system will do. We note from Fig. 7.6 that the identification

process of the unknown gain b stops at about k = 20, which is the

approximate time unit when the O.L.F.O. state trajectory begins to stay

around zero. If we consider control over an infinite interval (say using a

window-shifting approach) we may expect awfully slow ccnvergence rate in the

estimation of b to the true b, and a slow convergence rate of O.L.F.O.

control system to truly optimum control system.

In the second set of experiments, we have the same noise samples as

before but starting with the init :al condition

x (0) = " (7.22)

The initial guess on b. was

b (0) (7.23)

i.e. there are no zeroes. The weighting on the control is h = i, and we

take the final time N = 60. The plots for one typical sample experiment

are shown in Figs. 7.8-7.10. (The sample noise for the sample run shown

in Figs. 7.8-7.10 is the same as that shown in Figs. 7.5-7.7.) Comparing

thiL set of experiments with the last, we note that more or less the same

phenomenon occurred in both sets of experiments. The final estimate in b

is way off its true value, in fact b (k/k) and b2(k/k) are opposite in

sign with those of bI and b2 respectively; but interestingly enough

the adaptive gains are adjusted accordingly so that the values of the

O.L.F.O. control sequence and the truly optimal control sequence are almost

the same. This set of experiments indicates yet slower convergence (if

there is any).

,i
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'ote that in both sets of experiments even if the estimate of b does

not converge to the true b, the truly optimal trajectory and O.L.F.O.

trajectory are almost the same after the transient period.

Intuitively, the results are reasonable. Since we have not told the

problem to identify b, it will not do so unless the identification is

absolutely necessary. The experimental results verified our theoretical

deduction (see chapter 6, section 6.6).

The experiments seem to indicate that for stable sysLem, the choice of

initial guess will not greatly influence the O.L.F.O. trajectory, but will

affect the convergence rate for the estimate in the gain parameters, b.

Remark: In each set of exper!iments discussed above, the number of

sample runs is not enough to enable us to draw specific statistical con-

clusions; yet the regularity in the sample runs enable us to draw some crude

conclusions.

[ From the experiments, we may draw the following conclusions regarding

the O.L.F.O. control system.

(1) The rate of convergence seems to be very dependent on the

stability of the system. For unstable systemG, the convergence

rate seems to be faster compared to that for stable systems.

This verifies our theoretical predictions made in chapter 6,

section 6.6.

(2) It seems that large controls will help identification of the

unknown gain parameters, and so convergence rate seems to relate

directly to the magnitude of the control action. This again

agrees with our intuitive remark made in chapter 6, section 6.3.

(3) For unstable systems, the rate of convergence seems to be

fairly independent of the initial guess on tht unknown gain,

I'
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whereas for stable systems, the convergence rate may be quite

dependent on the initial guess on the unknown gain.

(4) For unstable systems, the O.L.F.O. trajectory will depend on the

the initial guess in b , but then for stable systems, the O.L.F.O.

trajectory will not vary drastically when we vary the initial

guess in b

(5) For the unstable system, the O.L.F.O. trajectory seems to follow

zlosely its input-free trajectory in the beginning, until the

diverging phenomenon tells the identifier to send back large

controls for identification purposes. This causes some overshoots

in the trajectory. The magnitude of the maximum overshoot seems

to relate inversely with the values for the weighting constant h

on control. For stable systems, simultaneous identification and

control seem to be carried out in the beginning. Since the system

is stable, with little control energy, the state will go to zero,

so after some time period when the state is near the origin,

approximately zero contr~l is applied thus terminating the

identification of b.

(6) Lastly, the author would like to coimment on the computational

feasibility of the proposed scheme. The above experiments were

simulated using an IBM 360/64/40 system. It was found that

the actual computation of the O.L.F.O. control sequence can be

carried out almost in real time for N = 40; i.e. in about 0.2

seconds, the following tasks were accomplished: One step computa-

tion of (6.3.19)-(6.3.32) (6 vector difference equation and 6 x 6

matrix difference equation), the parameter computations (6.3.34)-

(6.3.37), and the computation of R(k/k) (6.3.32), S(k)(6.3.39)
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(one 12 × 12 matrix difference equation and one 3 x 3 matrix difference

equation, computed in a time-backward direction directly for k < 40 steps,

k = 0, 1, ... , N-1).

Further Experimental Studies

The following experiments are suggested so as to provide a deeper

understanding on this class of problems.

(1) Implement a window-shiftlng O.L.F.O. control sequence as was sug-

gested in section 6.7. This will allow vs to consider control

over an infinite time span for k = 0, 1, ... To increase the

convergent rate, apply control sequence

U (k) if u (k)> e. (k) = ,(7.24)

C if u (k) < e

if 110(k/k) 6, and U*(k) = u*(k) if II.-(k/k) .

The values for 6 and c are adjusted through experimentatioi.

(2) Design a computer program which will enable us to study the

statistical behavior of the O.L.F.O. control system. For a

fixed assumed structure of the system and the same weighting

constants, study the statistical behavior of the system and the

average convergence rate of the suboptimal control system to the

optimal system. Vary the weighting constant h on the control,

and investigate, in a statistical sense, how it affects the

average maximum overshoot in the trajectory.

(3) To avoid large overshoots in the beginning for the unstable

system, one may wish to have a large weighting factor h for

the control energy in the beginning, and when the true value of

I
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b is exarly recovered, -e =ay .want h = 0.1. T"hus we =ay

;rrefer h to be ti=e varying

h(k) = g(k) 0.1 (7.25)

were gOk) is zacresing ad g(k) -- 0 as k - . Such an

cd-hoc approach nay lead to a well behaved O.L.F.O. control

s-ystz=.

()TO-e 2SS -?Z1C2 that b -- Q ) is nade for matheatical con-

vejence. In actua practice, t, and 7 g y not be available.

I-ith the results in chapter 3, observability of the pair (A, C)

is sufficient to assure :h-t independent of the guess on b

-sytotic cow.,ergence of the esti-arte of b is obtained. But

it icu d ba 1-oortaat to find out hwo 6ifferent assumptions on

b and . il-11 effect the rate of convergence for both stable"0 -b0

and unstable systems.

f.5) By varying the sampling rate, 'ne can study the effect of sampling

period to the beavior of the overall suboptiaal O.L.F.O. control

system.



CHAPTER VIII

CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH

The observer theory for discrete and continuous time linear systems

have been developed in parallel. We showed that one can view an obs3rver-

estimator as a learning device which is used to learn all recoverable

uncertainties while taking the statistical behavior of all inherent

disturbances into consideration. The class of obsecvers-estimators which

will do the learning optimally in the mean square sense is also derived.

Such optimal classes of observers-estimators can be incorporated in the

overall optimal control system, and for this reason analytical studies on

the optimum class of observers-estimators was carried out in detail. It is

noted that observers theory includes Kalman filtering and deterministic

exponential estimation as special cases.

The stochastic control of linear systems with known dynamics was

treated in detail. For this class of problems, we have imperfect informa-

tion due to the fact that there are inherent noise disturbance and unknown

initial condition of the system being controlled. It was proved that for

quadratic criteria the optimal controller consists of a "learner" and a set

of feedback gains. The learner is realized by an optimum observer-estimator.

The result is also known as the Separation Theorem. Physically, the

operating function of the optimum observer-estimator is to learn the current

state of the system. It can be shown that if the current state of the

system is asymptotically recoverable and if the system can be stabilized

by adapting some feedback gain, then the overall optimal stochastic system

will have nice behavior. The approach taken in studying this specific

class of problems can be extended to more general classes of problems

where the cost criteria are other than quadratic.

-271-
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In the next level, we considered control of linear discrete systems

with unknown gain parameters. Sipce the truly optimal control sequence

cannot be obtained because of the "curse of dimensionality." we look for a

computationally feasible suboptimal control sequence. Prompted by

physical consideration and computational considerations, we used the open-

loop feedback optimal approach to derive the O.L.F.O. control sequence. It

was proved that the O.L.F.O. :ontroller consists of a learner, which we call

an identifier, and a feedback gain plus correction term. The identifier

is realized by an optimal observer-estimator whose operating function is to

learn the current state and current unknown gain. Analytical studies were

done on the overall O.L.F.O. control system. It was proved that if the

initial state and unknown gain parameters are recoverable, then the overall

O.L.F.O. control system will asymptotically converge to the truly optimal

stochastic control system. The derived results seem to be computationally

feasible. The computation of the O.L.F.O. control is done on-line. For

all time k = 0, 1, ..., N-1, we have to compute a one-step 2n-vector

difference equation and a one-step 2n > 2n matrix difference equation

(identification equations), then a (N - k)-steps n-vector difference equa-

tion and a (N - k)-steps n x n matrix difference equation (parameters

computation), and finally a (N - k)-steps (n+l)n x (n+l)n matrix difference

equation (computation of k (k/k)(see Fig. 6.2 and Fig. 6.3). The vectors

and matrices being stored as time unit advances are (k!k), S(k/k), and

Z(k/k) which require a total of (2n2 + 3n) memory locations. (Note that

Z(k/k) is symmetric and this cuts down the storage memory requirements.)

Using the theoretical results derived, a computer program is developed

to study the control of a variety of third order systems with known poles

but unknown zeroes. Sample runs were made mainly to study the convergence
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rate of the O.L.F.O. control system to the truly optimal system. The

experimental results seem LO indicate that the rate of convergence depends

on the structure of the system: stable plants appear to have slow con-

vergence, whereas unstable plants will result ia fast convergence. For

stable system, the convergence rate depends highly on the initial guess of

the unknown zeroes locations; but for unstable stable, it appears that the

rate of convergence is quite insensitivL to the initial guess of the

unknown zeroes locations. More experiments must be periormed so as to

obtain a deeper understanding on this class of problems and obtain

engineering rules-of-thumb.

Directions of further research which are related directly to this

work are suggested near the end of each chapter when appropriate. In the

following, a list of topics is given, which the author thinks is a continua-

tion of this present work. Some possible approaches to these different

problems are suggested and the applicability of the results obtained in

this tesis to these different problems is discussed.

(A) Stochastic Control of Continuous-Time Linear Systems With Unknown Gains

We consider a continuous analog of (6.2.1)

k(t) - A(t)x(t) + b(t)u(t) + &(t) ; x(t) Q(x , O )
c: (6.8.1)

Y(t) = C(t)X(t) + n(t)

the gain vector b(t) is unknown but satisfies the stochastic differential

equation:

6 _t(t) = G(t)b(t) + 1(t) b o(t n Q(o bo)  (6.8.2)

The noises, E(t), r(t), and y(t) are assumed to be white Gaussian with

known statistical law. The performance measure is
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T9

7 .(u) Ex(T) F x(T) + f [xK(t) W(t) x(t) + u2(t)h(t)]dtl (6.8.3)
t
0

The control problem is to find u(T), t c it , T), such that (6.8.3) is

minimized subject to dynamic constraints, (6.8.1) and (6.8.2). instead of

first taking a sample data version of the problem and then applying the

derived results in chapter 6 (see chapter 7), we can apply the O.L.F.O.

approach to the continuous time system directly. One would then obtain a

continuous time identifier which estimates the current state and current

gain in continuous time. The results in cbhpter 4 can be applied. As

analogous to the discrete time version, we would then formulate a deterministic

(continuous-time) open-loop control problem. One may expect the overall

O.L.F.O. control system in the continuous-time case will be similar in

structure to that in the discrete version. The main difficulty lies in the

capability of computing the O.L.F.O. adaptive gain and the correction term

in continuous time. Some modifications can be made which take computation

capability into account. One approach may be that we resolve the open-loop

problem only in discrete time, t = 0, A, 2A, 3A, ..., even though we have

continuous time observation.

(B) Control With Unknown Dynamics

Consider the problem of controlling an unknown system p, (6.2.1),

where the matrix A(k), 0, 1, 2, ... , is unknown but satisfies some

linear difference equation. The statistical laws of the noise are assumed

known. Our objective is to control the system 9 using the quadratic

criteria. Formally, the truly optimal control can be obtained if we can

solve Bellman's equation. Unfortunately, this is impossible with the

present stage of development of computer technology. Therefore, one can

look for suboptimal but computationally feasible solutions to the problem.
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It would be desirable if we can have analytical studies on the derived

suboptimal control system. Different approa~hes guided by engineering

intuition are possible. An approach, which is a combination of maximum

likelihood and O.L.F.O. is suggested where an analytic study of the be-

havior of the overall suboptimal system may ba possible.

Consider the augmented system 8 given by (6.3.24). Let U(O, k-l)

be applied and YU(O -)(0,k) is observed. The most probable estimate

(maximum likelihood estimate) of I =(i)-O ;hich is denoted by

k-1 i=o
is obtained by picking I A(i)} ' to maximize the conditional probability

i=O
density p(l(i)6 1 Yu(0,kul)(0,)) subject to a certain difference equa-

tion describing the evoluation of A(i), i = 0, 1, ..., k-l. Fxtrapolate

the estimate of IA(i) and the estirates are denoted by WA (i)f
i=k i=k"

Assume that Ik(i) i=0 is the true A(i), i = 0, 1, ..., and apply the

results of chapter 6. The whole procedure is repeated at every step,

k = 0, 1,.....

Theoretically, this approach has some advantageous features. Using

Wald's Theorem [68], one will obtain asymptotic consistent (with probability

1) estimate of IA(i) ; one can then apply the results of section 6.6 to
i=0

obtain overall asymptotic optimal control system.

The difficulty lies in the real time computation of 1 (i)A i 0,

k = 0, 1, .... using a computer. For references in maximum likelihood

estimation, see Kashyap [67], Wald [68], Rauch, Tung, and Striebel [44];

.or evaluation of likelihood functions of a Gaussian process, see also

Schweppe [69].

(C) Control With Unknown Gain and Imperfectly Known Disturbance

Assume that the matrices A(k), k = 0, 1, ..., are known, the gain

vectors b(k), k = 0, 1, are assumed to be unknown but described by

t -- " '

...
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(6.2.2), (6.2.4), and (6.2.7). The vectors ri(k), (k), y(k), k = 0, 1.

are independent Gaussian vectors with unknown means and/or covariances. It

is necessary for us to recover the true means and covariances of the noise

vectors. A combination of maximum likelihood and O.L.F.O. approach can be

applied to such class of problems.

For references which are related to this class of problems, see Saga

and 1usa 170], Taran 171], Kashyap 167].

With some thorough understanding in the problems (A) and (B), we can

then start to investigate the problem of controlling a system where A(k),

b (k), : = 0, 1, .... are unknown but satisfy some difference equations, ind

the noise vectors are independent Gaussian vectors with unknown means and

variances.



APPENDIX A

ON THE PSEUDO-INVERSE OF A MATRIX

Let A be an n x m matrix which maps Rm - Rn . The pseudo-inverse

of A is denoted by A# and satisfies the conditions:

(1) AAx x V x R(A') (A.1)

(2) Az=0 ; V z N(A-) (A.2)

(3) A (y + z) = Ay + A z ; Z Y R a(A), z E N(A') (A.3)

With this definition, we have the following properties:

(A) (A# ) # = A (A.4)

# #z
(B) A' AA A#  (A.5)

(C) A A A A (A.6)

(E) Let A be an n X m matrix (n m n) of rank m. Then

A =(A A)- 1 A (A.7)

For Cie proofs of (A.4)-(A.7), see Zadah and Desoer (48], ".evine [23]; for

a different approach to generalized inverse of a matrix, see Penrose [72].
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APPENDIX B

WTEINER-hOPF r UATION

Let F(k) = F(y(i); i = 0, 1, ... , k), we have F(i) C F(i+l),

t 0, 1, ... , k-1, and so y(i) is F(k)-measurable for i 0, 1, ... , k.

Using lemma 2.2.6, and letma 2.2.7, .a have

EJIM y'(i)l E{EIk yri)/F(k)JJ EJx^/k -(i)I (B .1)

1 1, .,k

By assumption, w(k) satisfies (3.3.18), thus

E(W(k) - x(k/k))y-(i)l 0 i 0, 1, k k 0, 1, (B.2)

Since both w(k), x(k/k) are linear functioals of y(0), ... , y(k), (B.2)

also implies

EI(w(k) - x(k/k))(w(k) - x(k/k))-J = 0 k = 0, 1, (B.3)

Thus w(k) = -&(k/k) a.s.

The proof of Weiner-Hopf equation for the continuous case is the

same with slight modification, the induced a-algebra F(k) is replaced

by F F () f to, Q T, [t o , t]l. And so if

!i(t); t -t t is a random process such that for t > to, w(t) is a

inear functional of yI(C), T C it., t), and y2 (T), T c [to, t]; and

w(t) satisfies

EJw(t) yz(T) =1E x(t) y (t)1 T c [t., t) ; t > to (B.4)

EIw(t) Y( (J) =IE x(t) yj() ) -r [to, t] t > to (B.5)

then w(t) = x(t/t) a.s., t > t . (B.4), (B.5) imply the projection

equations (4.3.44).
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APPENIDIX C

EQUATION FOR ERROR PROCESS (CONTINTUOUS TIME CASE)

Let x(t) be a random process given by (4.3.1), and w(t) be.

random process satisfying (4.3.19), (4.3.20), and (4.3.16). Define

e(t) = w(t) - x(t). Differentiating e(t) and using (4.3.19), (4.3.i),

and (4.3.12):

e(t) = P(t) z(t) + P(t) T(t) A(t) '.(t) - P(t) T(t) L1(t) C1 Ct) w(t)

+ r'(t) '(t) P(t) z(t) + P(t) '(t) 3L2 (t) c2Wt) x~t)

+ j?(t) T(t) L(t) C (t) x(t) + P(t) T(t) k (t) i~(t)

+ Pt)T~) ~t ut)+ 2 (t) C.2t) x(t) + 12(t) C2(t) x(t)

-V.(t) C (t) A(t) x(t) + L2 (t) C2 (t) B (t) u (t) + VL (t) C2 (t) (t)

2 z-2

*x(t) + P(t) T(t) A~t) e(t) - P(t) T(t) L1 (t) C1(t) e~t)

Since P(t), T(t), V 2 (t), C 2(W also satisfy (4.3.16), we have

T(t) P(t) + Tt) (t 0;C(t Pt)+ 2(t) P(t) 0 (C.2)

and so we have

kot + P(t) T(t) P(t) I (M P(t) T(t)) P(t) = 2(t) C 2(t) P(t)

S - 2 Ct) Q2 t) P(t) (C.3)

i(t) T(t) + P(t) T(t) P(t) T~t) 1 2 (t) 2 (t) P(t) T(t)

=- 2() 2 () vCt 2Ct) %r2 (t) C,)(t) (C.4)
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Substituting (C.3) and (C.4) into (C.1) and noting Lq(t) =P(t) z(t)

+ V 2(t) y(t), w~e have

e~)=(A~t ( t ) ) 2 (t) P P(t) T (t) L.(t C(t)) e(t)

+ (V12 (t) C2 (t) -I) E(t) + P(t) T(t) Ll(t) rj(t) (C -f

The initial error is

e(t 0 P(tO) z(t 0) ' V2to C 2(to) Cto))

P(t 0 !(t 06 (x x(to) Cj- K2(to) g2(t))(x x(ro))(C.6)j
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